Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import pandas as pd | |
# import plotly.express as px | |
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load | |
# # Constants | |
# API_KEY = "84e26811a314599e940f343b4d5894a7" | |
# LOCATION = "Pakistan" | |
# # Sidebar | |
# st.sidebar.title("Smart Grid Dashboard") | |
# location = st.sidebar.text_input("Enter Location", LOCATION) | |
# # Fetch and display weather data | |
# weather = fetch_weather(API_KEY, location) | |
# if weather: | |
# st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
# st.sidebar.write(f"Weather: {weather['weather']}") | |
# # Main dashboard with tabs | |
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"]) | |
# with tabs[0]: | |
# st.title("Real-Time Smart Grid Dashboard") | |
# # Generate synthetic data | |
# data = generate_synthetic_data() | |
# # Plot total consumption, grid generation, and storage usage | |
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"], | |
# title="Energy Consumption, Generation, and Storage Usage Over Time", | |
# labels={"value": "Energy (kWh)", "variable": "Energy Source"}) | |
# st.plotly_chart(fig) | |
# # Grid health overview | |
# st.subheader("Grid Health Overview") | |
# grid_health_counts = data["grid_health"].value_counts() | |
# st.bar_chart(grid_health_counts) | |
# # Optimization recommendations | |
# current_demand = data["total_consumption_kwh"].iloc[-1] | |
# current_solar = data["solar_output_kw"].iloc[-1] | |
# current_wind = data["wind_output_kw"].iloc[-1] | |
# recommendation = optimize_load(current_demand, current_solar, current_wind) | |
# st.subheader("Recommendations") | |
# st.write(f"Current Load Demand: {current_demand} kWh") | |
# st.write(f"Solar Output: {current_solar} kW") | |
# st.write(f"Wind Output: {current_wind} kW") | |
# st.write(f"Recommendation: {recommendation}") | |
# with tabs[1]: | |
# st.title("Energy Storage Overview") | |
# # Total energy stored | |
# total_storage = 500 # Example of total energy storage | |
# st.subheader(f"Total Energy Stored: {total_storage} kWh") | |
# # Energy storage contribution from different sources | |
# st.subheader("Energy Storage Contributions") | |
# energy_sources = pd.DataFrame({ | |
# "Source": ["Wind", "Solar", "Turbine"], | |
# "Energy (kW/min)": [5, 7, 10] | |
# }) | |
# st.bar_chart(energy_sources.set_index("Source")) | |
# # Show energy storage status with a rounded circle | |
# st.subheader("Energy Storage Circle") | |
# st.markdown("Energy storage is a combination of contributions from different renewable sources.") | |
# # Visualization of energy storage circle using Plotly | |
# storage_data = { | |
# "Source": ["Wind", "Solar", "Turbine"], | |
# "Energy": [5, 7, 10], | |
# } | |
# storage_df = pd.DataFrame(storage_data) | |
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources") | |
# st.plotly_chart(fig) | |
# with tabs[2]: | |
# st.title("Energy Trading Overview") | |
# # Energy cubes | |
# st.subheader("Energy Cubes Stored") | |
# energy_cubes = pd.DataFrame({ | |
# "Country": ["China", "Sri Lanka", "Bangladesh"], | |
# "Energy (kWh)": [100, 200, 300], | |
# "Shareable": [True, True, False] | |
# }) | |
# # Displaying the energy cubes in a grid | |
# st.write("Stored energy can be shared with other countries.") | |
# st.dataframe(energy_cubes) | |
# # Visualization of energy that can be shared | |
# st.subheader("Energy Trading Visualization") | |
# st.markdown("The following energy amounts are available for sharing with different countries.") | |
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading") | |
# st.plotly_chart(trading_fig) | |
# code 2 | |
# import streamlit as st | |
# import pandas as pd | |
# import plotly.graph_objects as go | |
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data | |
# # Constants | |
# API_KEY = "84e26811a314599e940f343b4d5894a7" | |
# DEFAULT_LOCATION = "Pakistan" | |
# # Sidebar for location and weather data | |
# st.sidebar.title("Smart Grid Dashboard") | |
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION) | |
# weather = fetch_weather(API_KEY, location) | |
# if weather: | |
# st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
# st.sidebar.write(f"Weather: {weather['weather']}") | |
# # Main interface | |
# st.title("Real-Time Smart Grid Dashboard") | |
# # Tabs | |
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"]) | |
# # Home Tab | |
# with tabs[0]: | |
# st.header("Overview: Power and Energy Usage") | |
# # Fetch synthetic data | |
# data = generate_synthetic_data() | |
# # Line Graph for Power Consumption, Generation, and Storage | |
# fig = go.Figure() | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["total_power_consumption_mw"], | |
# mode='lines', | |
# name="Total Power Consumption (MW)", | |
# line=dict(color="red") | |
# )) | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["grid_generation_mw"], | |
# mode='lines', | |
# name="Grid Generation (MW)", | |
# line=dict(color="green") | |
# )) | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["storage_utilization_mw"], | |
# mode='lines', | |
# name="Storage Utilization (MW)", | |
# line=dict(color="blue") | |
# )) | |
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)") | |
# st.plotly_chart(fig) | |
# # Storage Tab | |
# with tabs[1]: | |
# st.header("Energy Storage Overview") | |
# storage_data = generate_storage_data() | |
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh") | |
# # Circular storage breakdown | |
# sources = ["Wind", "Solar", "Turbine"] | |
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]] | |
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)]) | |
# fig.update_layout(title="Energy Storage Breakdown") | |
# st.plotly_chart(fig) | |
# # Electricity Trade Management Tab | |
# with tabs[2]: | |
# st.header("Electricity Trade Management") | |
# # Sample trade data | |
# trade_data = { | |
# "Country": ["Srilanka", "China", "Bangladesh"], | |
# "Energy Exported (MW)": [50, 30, 70], | |
# "Energy Imported (MW)": [20, 40, 10], | |
# } | |
# trade_df = pd.DataFrame(trade_data) | |
# st.subheader("Trade Details") | |
# st.write(trade_df) | |
# # Visualization | |
# fig = go.Figure() | |
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple')) | |
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange')) | |
# fig.update_layout(title="Energy Trade", barmode='group') | |
# st.plotly_chart(fig) | |
# code 3 | |
# import streamlit as st | |
# import pandas as pd | |
# import plotly.graph_objects as go | |
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data | |
# # Constants | |
# API_KEY = "84e26811a314599e940f343b4d5894a7" | |
# DEFAULT_LOCATION = "pakistan" | |
# # Sidebar for location and weather data | |
# st.sidebar.title("Smart Grid Dashboard") | |
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION) | |
# weather = fetch_weather(API_KEY, location) | |
# if weather: | |
# st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
# st.sidebar.write(f"Weather: {weather['weather']}") | |
# # Main interface | |
# st.title("Real-Time Smart Grid Dashboard") | |
# # Tabs | |
# tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"]) | |
# # Home Tab | |
# with tabs[0]: | |
# st.header("Overview: Power and Energy Usage") | |
# # Fetch synthetic data | |
# data = generate_synthetic_data() | |
# # Line Graph for Power Consumption, Generation, and Storage | |
# fig = go.Figure() | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["total_power_consumption_mw"], | |
# mode='lines', | |
# name="Total Power Consumption (MW)", | |
# line=dict(color="red") | |
# )) | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["grid_generation_mw"], | |
# mode='lines', | |
# name="Grid Generation (MW)", | |
# line=dict(color="green") | |
# )) | |
# fig.add_trace(go.Scatter( | |
# x=data["timestamp"], | |
# y=data["storage_utilization_mw"], | |
# mode='lines', | |
# name="Storage Utilization (MW)", | |
# line=dict(color="blue") | |
# )) | |
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)") | |
# st.plotly_chart(fig) | |
# # Grid Health Indicator | |
# # # Grid health overview | |
# # st.subheader("Grid Health Overview") | |
# # grid_health_counts = data["grid_health"].value_counts() | |
# # st.bar_chart(grid_health_counts) | |
# st.subheader("Grid Health Status") | |
# grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical" | |
# st.write(f"**Grid Health:** {grid_health}") | |
# # AI Recommendations | |
# st.subheader("AI Recommendations") | |
# recommendations = [ | |
# "Increase solar panel efficiency by 10% for peak hours.", | |
# "Optimize wind turbine alignment based on real-time wind data.", | |
# "Store excess energy during low-demand periods for future use.", | |
# "Improve grid stability by distributing load dynamically across sectors.", | |
# ] | |
# for rec in recommendations: | |
# st.write(f"- {rec}") | |
# # Storage Tab | |
# with tabs[1]: | |
# st.header("Energy Storage Overview") | |
# storage_data = generate_storage_data() | |
# # Individual Circles for Wind, Solar, and Turbine | |
# st.subheader("Energy Contributions") | |
# col1, col2, col3 = st.columns(3) | |
# with col1: | |
# st.metric("Wind Energy", f"{storage_data['wind']} MW/min") | |
# with col2: | |
# st.metric("Solar Energy", f"{storage_data['solar']} MW/min") | |
# with col3: | |
# st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min") | |
# # Central Grid Storage Visualization | |
# st.subheader("Total Energy Stored in Grid") | |
# fig = go.Figure() | |
# fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue"))) | |
# fig.add_trace(go.Scatter( | |
# x=[-1, 1, 0], | |
# y=[1, 1, -1], | |
# mode='markers+text', | |
# text=["Wind", "Solar", "Turbine"], | |
# marker=dict(size=50, color=["green", "yellow", "orange"]) | |
# )) | |
# fig.add_trace(go.Scatter( | |
# x=[-0.5, 0.5, 0], | |
# y=[0.5, 0.5, -0.5], | |
# mode="lines", | |
# line=dict(width=3, color="gray"), | |
# )) | |
# fig.update_layout( | |
# title="Energy Storage Visualization", | |
# xaxis=dict(visible=False), | |
# yaxis=dict(visible=False), | |
# showlegend=False | |
# ) | |
# st.plotly_chart(fig) | |
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh") | |
# # Electricity Trade Management Tab | |
# with tabs[2]: | |
# st.header("Electricity Trade Management") | |
# # Sample trade data | |
# trade_data = { | |
# "Country": ["Country A", "Country B", "Country C"], | |
# "Energy Exported (MW)": [50, 30, 70], | |
# "Energy Imported (MW)": [20, 40, 10], | |
# } | |
# trade_df = pd.DataFrame(trade_data) | |
# st.subheader("Trade Details") | |
# st.write(trade_df) | |
# # Visualization | |
# fig = go.Figure() | |
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple')) | |
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange')) | |
# fig.update_layout(title="Energy Trade", barmode='group') | |
# st.plotly_chart(fig) | |
# code 4 | |
# import streamlit as st | |
# import plotly.express as px | |
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load | |
# import pandas as pd | |
# # Constants | |
# API_KEY = "84e26811a314599e940f343b4d5894a7" # Replace with your OpenWeather API key | |
# LOCATION = "Pakistan" | |
# # Sidebar | |
# st.sidebar.title("Smart Grid Dashboard") | |
# location = st.sidebar.text_input("Enter Location", LOCATION) | |
# # Fetch and display weather data | |
# weather = fetch_weather(API_KEY, location) | |
# st.sidebar.subheader("Weather Information") | |
# if weather: | |
# st.sidebar.write(f"**Temperature**: {weather['temperature']} °C") | |
# st.sidebar.write(f"**Wind Speed**: {weather['wind_speed']} m/s") | |
# st.sidebar.write(f"**Weather**: {weather['weather']}") | |
# # Main tabs | |
# tab1, tab2, tab3 = st.tabs(["Home", "Power Storage", "Power Trading management"]) | |
# # Home Tab | |
# with tab1: | |
# st.title("Real-Time Smart Grid Dashboard") | |
# # Generate synthetic data | |
# data = generate_synthetic_data() | |
# # Show weather at top | |
# if weather: | |
# st.write(f"### Location: {location}") | |
# st.write(f"Temperature: {weather['temperature']} °C | Wind Speed: {weather['wind_speed']} m/s | Weather: {weather['weather']}") | |
# # Power consumption graph | |
# fig = px.line( | |
# data, | |
# x="timestamp", | |
# y=["power_consumption_mw", "generation_mw", "storage_usage_mw"], | |
# labels={"value": "Power (MW)", "variable": "Metric"}, | |
# title="Power Flow Over Time" | |
# ) | |
# fig.update_traces(mode="lines+markers") | |
# st.plotly_chart(fig) | |
# # Grid health as bar chart | |
# st.subheader("Grid Health Overview") | |
# grid_health_counts = data["grid_health"].value_counts() | |
# fig_health = px.bar( | |
# grid_health_counts, | |
# x=grid_health_counts.index, | |
# y=grid_health_counts.values, | |
# labels={"x": "Grid Status", "y": "Count"}, | |
# title="Grid Health Status" | |
# ) | |
# st.plotly_chart(fig_health) | |
# # AI recommendations | |
# st.subheader("AI Recommendations") | |
# current_demand = data["power_consumption_mw"].iloc[-1] | |
# current_solar = data["solar_output_mw"].iloc[-1] | |
# current_wind = data["wind_output_mw"].iloc[-1] | |
# recommendation = optimize_load(current_demand, current_solar, current_wind) | |
# st.write(f"**Current Load Demand**: {current_demand} MW") | |
# st.write(f"**Solar Output**: {current_solar} MW") | |
# st.write(f"**Wind Output**: {current_wind} MW") | |
# st.write(f"**Recommendation**: {recommendation}") | |
# # Storage Tab | |
# with tab2: | |
# st.title("Energy Storage Status") | |
# # Pie chart of energy percentage contribution | |
# storage_data = { | |
# "Wind": data["wind_output_mw"].mean(), | |
# "Solar": data["solar_output_mw"].mean(), | |
# "Turbine": data["turbine_output_mw"].mean() | |
# } | |
# fig_pie = px.pie( | |
# names=storage_data.keys(), | |
# values=storage_data.values(), | |
# title="Energy Contribution by Resource" | |
# ) | |
# st.plotly_chart(fig_pie) | |
# # Circle visualization for storage | |
# st.subheader("Total Energy Stored") | |
# total_storage = sum(storage_data.values()) | |
# st.write(f"**Total Energy Stored**: {total_storage:.2f} MW") | |
# st.markdown( | |
# """ | |
# <div style="display: flex; justify-content: center; align-items: center; flex-direction: column;"> | |
# <div style="width: 150px; height: 150px; border-radius: 50%; background-color: #FFDD00; display: flex; justify-content: center; align-items: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;"> | |
# {total_storage:.2f} MW | |
# </div> | |
# <div style="display: flex; gap: 50px;"> | |
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #0073FF; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;"> | |
# Wind<br>{storage_data["Wind"]:.2f} MW | |
# </div> | |
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #FF5733; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;"> | |
# Solar<br>{storage_data["Solar"]:.2f} MW | |
# </div> | |
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #28B463; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;"> | |
# Turbine<br>{storage_data["Turbine"]:.2f} MW | |
# </div> | |
# </div> | |
# </div> | |
# """, | |
# unsafe_allow_html=True | |
# ) | |
# # Trading Tab | |
# with tab3: | |
# st.title("Electricity Trade Management") | |
# st.write("Under development...") | |
# code 5 | |
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from app_backend import fetch_weather, generate_synthetic_data, optimize_load | |
# Constants | |
API_KEY = "84e26811a314599e940f343b4d5894a7" | |
LOCATION = "Pakistan" | |
# Sidebar | |
st.sidebar.title("Smart Grid Dashboard") | |
location = st.sidebar.text_input("Enter Location", LOCATION) | |
# Fetch and display weather data | |
weather = fetch_weather(API_KEY, location) | |
if weather: | |
st.sidebar.write(f"Temperature: {weather['temperature']} °C") | |
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s") | |
st.sidebar.write(f"Weather: {weather['weather']}") | |
# Tabs | |
tab_home, tab_storage, tab_trading = st.tabs(["Home", "Power Storage", "Electricity Trade Management"]) | |
# Home Tab | |
with tab_home: | |
st.title("Real-Time Smart Grid Dashboard") | |
# Generate synthetic data | |
data = generate_synthetic_data() | |
# Grid Health | |
# st.subheader("Grid Health Overview") | |
# grid_health_counts = data["grid_health"].value_counts() | |
# st.bar_chart(grid_health_counts) | |
# Power Consumption, Generation & Storage Graph | |
st.subheader("Power Consumption, Generation & Storage") | |
fig = px.line(data, x="timestamp", y=["load_demand_kwh", "solar_output_kw", "wind_output_kw"], | |
title="Power Consumption, Generation & Storage", labels={"value": "Power (MW)"}) | |
fig.update_traces(line=dict(width=2)) | |
st.plotly_chart(fig) | |
# Grid Health | |
st.subheader("Grid Health Overview") | |
grid_health_counts = data["grid_health"].value_counts() | |
st.bar_chart(grid_health_counts) | |
# Optimization Recommendations | |
current_demand = data["load_demand_kwh"].iloc[-1] | |
current_solar = data["solar_output_kw"].iloc[-1] | |
current_wind = data["wind_output_kw"].iloc[-1] | |
recommendation = optimize_load(current_demand, current_solar, current_wind) | |
st.subheader("Recommendations") | |
st.write(f"Current Load Demand: {current_demand} MW") | |
st.write(f"Solar Output: {current_solar} MW") | |
st.write(f"Wind Output: {current_wind} MW") | |
st.write(f"Recommendation: {recommendation}") | |
# Storage Tab | |
with tab_storage: | |
st.title("Energy Storage Overview") | |
# Energy Contribution by Resources | |
st.subheader("Energy Contribution Percentage by Resources") | |
energy_data = { | |
"Wind": 5, | |
"Solar": 7, | |
"Turbine": 10 | |
} | |
energy_df = pd.DataFrame(list(energy_data.items()), columns=["Source", "Energy (MW)"]) | |
fig = px.pie(energy_df, values="Energy (MW)", names="Source", title="Energy Contribution by Resources") | |
st.plotly_chart(fig) | |
# Energy Storage Merge | |
st.subheader("Total Energy Stored") | |
st.write("Energy stored from all sources:") | |
energy_stored = sum(energy_data.values()) | |
st.write(f"Total Energy Stored: {energy_stored} MW") | |
st.write("Energy sources merged into total energy storage:") | |
st.write(f"Total Energy Stored in Grid: {energy_stored} MW") | |
# Trading Tab | |
with tab_trading: | |
st.title("Electricity Trade Management") | |
# Simulating Electricity Trade (Energy cubes & trading) | |
st.subheader("Energy Trade Overview") | |
energy_trade = { | |
"USA": 50, | |
"Germany": 40, | |
"India": 30 | |
} | |
trade_df = pd.DataFrame(list(energy_trade.items()), columns=["Country", "Energy (MW)"]) | |
fig = px.bar(trade_df, x="Country", y="Energy (MW)", title="Energy Trading Overview") | |
st.plotly_chart(fig) | |
st.write("Energy cubes available for trading:") | |
st.write("The system can trade energy with other countries.") | |