Spaces:
Sleeping
Sleeping
File size: 20,519 Bytes
c238d7d 1d2c4f6 c238d7d 0b49a97 e60d54e 0b49a97 e60d54e 0b49a97 c238d7d 0b49a97 e60d54e 0b49a97 e60d54e 0b49a97 e60d54e 0b49a97 c238d7d 0b49a97 e60d54e 0b49a97 e60d54e 0b49a97 341941e 0b49a97 1d2c4f6 0b49a97 1d2c4f6 0b49a97 e60d54e 0b49a97 1d2c4f6 0b49a97 e60d54e 0b49a97 e60d54e 0b49a97 305f877 0b49a97 305f877 0b49a97 5201ecd 0b49a97 305f877 0b49a97 305f877 40e64d5 0b49a97 305f877 0b49a97 305f877 0b49a97 305f877 0894c3b 305f877 40e64d5 305f877 0b49a97 305f877 0b49a97 305f877 0b49a97 305f877 0b49a97 305f877 e60d54e 0b49a97 305f877 0b49a97 305f877 43bb94b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
# code 2
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "Pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Circular storage breakdown
# sources = ["Wind", "Solar", "Turbine"]
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
# fig.update_layout(title="Energy Storage Breakdown")
# st.plotly_chart(fig)
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Srilanka", "China", "Bangladesh"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 3
# import streamlit as st
# import pandas as pd
# import plotly.graph_objects as go
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# DEFAULT_LOCATION = "pakistan"
# # Sidebar for location and weather data
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main interface
# st.title("Real-Time Smart Grid Dashboard")
# # Tabs
# tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
# # Home Tab
# with tabs[0]:
# st.header("Overview: Power and Energy Usage")
# # Fetch synthetic data
# data = generate_synthetic_data()
# # Line Graph for Power Consumption, Generation, and Storage
# fig = go.Figure()
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["total_power_consumption_mw"],
# mode='lines',
# name="Total Power Consumption (MW)",
# line=dict(color="red")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["grid_generation_mw"],
# mode='lines',
# name="Grid Generation (MW)",
# line=dict(color="green")
# ))
# fig.add_trace(go.Scatter(
# x=data["timestamp"],
# y=data["storage_utilization_mw"],
# mode='lines',
# name="Storage Utilization (MW)",
# line=dict(color="blue")
# ))
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
# st.plotly_chart(fig)
# # Grid Health Indicator
# # # Grid health overview
# # st.subheader("Grid Health Overview")
# # grid_health_counts = data["grid_health"].value_counts()
# # st.bar_chart(grid_health_counts)
# st.subheader("Grid Health Status")
# grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
# st.write(f"**Grid Health:** {grid_health}")
# # AI Recommendations
# st.subheader("AI Recommendations")
# recommendations = [
# "Increase solar panel efficiency by 10% for peak hours.",
# "Optimize wind turbine alignment based on real-time wind data.",
# "Store excess energy during low-demand periods for future use.",
# "Improve grid stability by distributing load dynamically across sectors.",
# ]
# for rec in recommendations:
# st.write(f"- {rec}")
# # Storage Tab
# with tabs[1]:
# st.header("Energy Storage Overview")
# storage_data = generate_storage_data()
# # Individual Circles for Wind, Solar, and Turbine
# st.subheader("Energy Contributions")
# col1, col2, col3 = st.columns(3)
# with col1:
# st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
# with col2:
# st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
# with col3:
# st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")
# # Central Grid Storage Visualization
# st.subheader("Total Energy Stored in Grid")
# fig = go.Figure()
# fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
# fig.add_trace(go.Scatter(
# x=[-1, 1, 0],
# y=[1, 1, -1],
# mode='markers+text',
# text=["Wind", "Solar", "Turbine"],
# marker=dict(size=50, color=["green", "yellow", "orange"])
# ))
# fig.add_trace(go.Scatter(
# x=[-0.5, 0.5, 0],
# y=[0.5, 0.5, -0.5],
# mode="lines",
# line=dict(width=3, color="gray"),
# ))
# fig.update_layout(
# title="Energy Storage Visualization",
# xaxis=dict(visible=False),
# yaxis=dict(visible=False),
# showlegend=False
# )
# st.plotly_chart(fig)
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
# # Electricity Trade Management Tab
# with tabs[2]:
# st.header("Electricity Trade Management")
# # Sample trade data
# trade_data = {
# "Country": ["Country A", "Country B", "Country C"],
# "Energy Exported (MW)": [50, 30, 70],
# "Energy Imported (MW)": [20, 40, 10],
# }
# trade_df = pd.DataFrame(trade_data)
# st.subheader("Trade Details")
# st.write(trade_df)
# # Visualization
# fig = go.Figure()
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
# fig.update_layout(title="Energy Trade", barmode='group')
# st.plotly_chart(fig)
# code 4
# import streamlit as st
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# import pandas as pd
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7" # Replace with your OpenWeather API key
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# st.sidebar.subheader("Weather Information")
# if weather:
# st.sidebar.write(f"**Temperature**: {weather['temperature']} °C")
# st.sidebar.write(f"**Wind Speed**: {weather['wind_speed']} m/s")
# st.sidebar.write(f"**Weather**: {weather['weather']}")
# # Main tabs
# tab1, tab2, tab3 = st.tabs(["Home", "Power Storage", "Power Trading management"])
# # Home Tab
# with tab1:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Show weather at top
# if weather:
# st.write(f"### Location: {location}")
# st.write(f"Temperature: {weather['temperature']} °C | Wind Speed: {weather['wind_speed']} m/s | Weather: {weather['weather']}")
# # Power consumption graph
# fig = px.line(
# data,
# x="timestamp",
# y=["power_consumption_mw", "generation_mw", "storage_usage_mw"],
# labels={"value": "Power (MW)", "variable": "Metric"},
# title="Power Flow Over Time"
# )
# fig.update_traces(mode="lines+markers")
# st.plotly_chart(fig)
# # Grid health as bar chart
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# fig_health = px.bar(
# grid_health_counts,
# x=grid_health_counts.index,
# y=grid_health_counts.values,
# labels={"x": "Grid Status", "y": "Count"},
# title="Grid Health Status"
# )
# st.plotly_chart(fig_health)
# # AI recommendations
# st.subheader("AI Recommendations")
# current_demand = data["power_consumption_mw"].iloc[-1]
# current_solar = data["solar_output_mw"].iloc[-1]
# current_wind = data["wind_output_mw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.write(f"**Current Load Demand**: {current_demand} MW")
# st.write(f"**Solar Output**: {current_solar} MW")
# st.write(f"**Wind Output**: {current_wind} MW")
# st.write(f"**Recommendation**: {recommendation}")
# # Storage Tab
# with tab2:
# st.title("Energy Storage Status")
# # Pie chart of energy percentage contribution
# storage_data = {
# "Wind": data["wind_output_mw"].mean(),
# "Solar": data["solar_output_mw"].mean(),
# "Turbine": data["turbine_output_mw"].mean()
# }
# fig_pie = px.pie(
# names=storage_data.keys(),
# values=storage_data.values(),
# title="Energy Contribution by Resource"
# )
# st.plotly_chart(fig_pie)
# # Circle visualization for storage
# st.subheader("Total Energy Stored")
# total_storage = sum(storage_data.values())
# st.write(f"**Total Energy Stored**: {total_storage:.2f} MW")
# st.markdown(
# """
# <div style="display: flex; justify-content: center; align-items: center; flex-direction: column;">
# <div style="width: 150px; height: 150px; border-radius: 50%; background-color: #FFDD00; display: flex; justify-content: center; align-items: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;">
# {total_storage:.2f} MW
# </div>
# <div style="display: flex; gap: 50px;">
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #0073FF; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Wind<br>{storage_data["Wind"]:.2f} MW
# </div>
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #FF5733; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Solar<br>{storage_data["Solar"]:.2f} MW
# </div>
# <div style="width: 100px; height: 100px; border-radius: 50%; background-color: #28B463; display: flex; justify-content: center; align-items: center; font-size: 16px; font-weight: bold;">
# Turbine<br>{storage_data["Turbine"]:.2f} MW
# </div>
# </div>
# </div>
# """,
# unsafe_allow_html=True
# )
# # Trading Tab
# with tab3:
# st.title("Electricity Trade Management")
# st.write("Under development...")
# code 5
import streamlit as st
import pandas as pd
import plotly.express as px
from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
LOCATION = "Pakistan"
# Sidebar
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", LOCATION)
# Fetch and display weather data
weather = fetch_weather(API_KEY, location)
if weather:
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
st.sidebar.write(f"Weather: {weather['weather']}")
# Tabs
tab_home, tab_storage, tab_trading = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
# Home Tab
with tab_home:
st.title("Real-Time Smart Grid Dashboard")
# Generate synthetic data
data = generate_synthetic_data()
# Grid Health
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# Power Consumption, Generation & Storage Graph
st.subheader("Power Consumption, Generation & Storage")
fig = px.line(data, x="timestamp", y=["load_demand_kwh", "solar_output_kw", "wind_output_kw"],
title="Power Consumption, Generation & Storage", labels={"value": "Power (MW)"})
fig.update_traces(line=dict(width=2))
st.plotly_chart(fig)
# Grid Health
st.subheader("Grid Health Overview")
grid_health_counts = data["grid_health"].value_counts()
st.bar_chart(grid_health_counts)
# Optimization Recommendations
current_demand = data["load_demand_kwh"].iloc[-1]
current_solar = data["solar_output_kw"].iloc[-1]
current_wind = data["wind_output_kw"].iloc[-1]
recommendation = optimize_load(current_demand, current_solar, current_wind)
st.subheader("Recommendations")
st.write(f"Current Load Demand: {current_demand} MW")
st.write(f"Solar Output: {current_solar} MW")
st.write(f"Wind Output: {current_wind} MW")
st.write(f"Recommendation: {recommendation}")
# Storage Tab
with tab_storage:
st.title("Energy Storage Overview")
# Energy Contribution by Resources
st.subheader("Energy Contribution Percentage by Resources")
energy_data = {
"Wind": 5,
"Solar": 7,
"Turbine": 10
}
energy_df = pd.DataFrame(list(energy_data.items()), columns=["Source", "Energy (MW)"])
fig = px.pie(energy_df, values="Energy (MW)", names="Source", title="Energy Contribution by Resources")
st.plotly_chart(fig)
# Energy Storage Merge
st.subheader("Total Energy Stored")
st.write("Energy stored from all sources:")
energy_stored = sum(energy_data.values())
st.write(f"Total Energy Stored: {energy_stored} MW")
st.write("Energy sources merged into total energy storage:")
st.write(f"Total Energy Stored in Grid: {energy_stored} MW")
# Trading Tab
with tab_trading:
st.title("Electricity Trade Management")
# Simulating Electricity Trade (Energy cubes & trading)
st.subheader("Energy Trade Overview")
energy_trade = {
"USA": 50,
"Germany": 40,
"India": 30
}
trade_df = pd.DataFrame(list(energy_trade.items()), columns=["Country", "Energy (MW)"])
fig = px.bar(trade_df, x="Country", y="Energy (MW)", title="Energy Trading Overview")
st.plotly_chart(fig)
st.write("Energy cubes available for trading:")
st.write("The system can trade energy with other countries.")
|