Spaces:
Sleeping
Sleeping
Update app_backend.py
Browse files- app_backend.py +10 -50
app_backend.py
CHANGED
@@ -1,46 +1,3 @@
|
|
1 |
-
# import pandas as pd
|
2 |
-
# import numpy as np
|
3 |
-
# import plotly.express as px
|
4 |
-
# from datetime import datetime, timedelta
|
5 |
-
# import requests
|
6 |
-
|
7 |
-
# # Function to fetch real-time weather data
|
8 |
-
# def fetch_weather(api_key, location):
|
9 |
-
# url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
10 |
-
# response = requests.get(url).json()
|
11 |
-
# if response["cod"] == 200:
|
12 |
-
# return {
|
13 |
-
# "temperature": response["main"]["temp"],
|
14 |
-
# "wind_speed": response["wind"]["speed"],
|
15 |
-
# "weather": response["weather"][0]["description"]
|
16 |
-
# }
|
17 |
-
# return None
|
18 |
-
|
19 |
-
# # Generate synthetic grid data
|
20 |
-
# def generate_synthetic_data():
|
21 |
-
# time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
22 |
-
# return pd.DataFrame({
|
23 |
-
# "timestamp": time_index,
|
24 |
-
# "total_consumption_kwh": np.random.randint(200, 500, len(time_index)),
|
25 |
-
# "grid_generation_kwh": np.random.randint(150, 400, len(time_index)),
|
26 |
-
# "storage_usage_kwh": np.random.randint(50, 150, len(time_index)),
|
27 |
-
# "solar_output_kw": np.random.randint(50, 150, len(time_index)),
|
28 |
-
# "wind_output_kw": np.random.randint(30, 120, len(time_index)),
|
29 |
-
# "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
30 |
-
# })
|
31 |
-
|
32 |
-
# # Load optimization recommendation
|
33 |
-
# def optimize_load(demand, solar, wind):
|
34 |
-
# renewable_supply = solar + wind
|
35 |
-
# if renewable_supply >= demand:
|
36 |
-
# return "Grid Stable"
|
37 |
-
# return "Use Backup or Adjust Load"
|
38 |
-
|
39 |
-
# # Export functions for use in Streamlit
|
40 |
-
# if __name__ == "__main__":
|
41 |
-
# print("Backend ready!")
|
42 |
-
|
43 |
-
|
44 |
import pandas as pd
|
45 |
import numpy as np
|
46 |
import plotly.express as px
|
@@ -59,19 +16,20 @@ def fetch_weather(api_key, location):
|
|
59 |
}
|
60 |
return None
|
61 |
|
62 |
-
# Generate synthetic grid data
|
63 |
def generate_synthetic_data():
|
64 |
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
65 |
return pd.DataFrame({
|
66 |
"timestamp": time_index,
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
|
|
71 |
"grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
72 |
})
|
73 |
|
74 |
-
# Load optimization recommendation
|
75 |
def optimize_load(demand, solar, wind):
|
76 |
renewable_supply = solar + wind
|
77 |
if renewable_supply >= demand:
|
@@ -80,4 +38,6 @@ def optimize_load(demand, solar, wind):
|
|
80 |
|
81 |
# Export functions for use in Streamlit
|
82 |
if __name__ == "__main__":
|
83 |
-
print("Backend ready!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
import plotly.express as px
|
|
|
16 |
}
|
17 |
return None
|
18 |
|
19 |
+
# Generate synthetic grid data
|
20 |
def generate_synthetic_data():
|
21 |
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
22 |
return pd.DataFrame({
|
23 |
"timestamp": time_index,
|
24 |
+
"total_consumption_kwh": np.random.randint(200, 500, len(time_index)),
|
25 |
+
"grid_generation_kwh": np.random.randint(150, 400, len(time_index)),
|
26 |
+
"storage_usage_kwh": np.random.randint(50, 150, len(time_index)),
|
27 |
+
"solar_output_kw": np.random.randint(50, 150, len(time_index)),
|
28 |
+
"wind_output_kw": np.random.randint(30, 120, len(time_index)),
|
29 |
"grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
30 |
})
|
31 |
|
32 |
+
# Load optimization recommendation
|
33 |
def optimize_load(demand, solar, wind):
|
34 |
renewable_supply = solar + wind
|
35 |
if renewable_supply >= demand:
|
|
|
38 |
|
39 |
# Export functions for use in Streamlit
|
40 |
if __name__ == "__main__":
|
41 |
+
print("Backend ready!")
|
42 |
+
|
43 |
+
|