Spaces:
Sleeping
Sleeping
Update app_backend.py
Browse files- app_backend.py +78 -78
app_backend.py
CHANGED
@@ -45,99 +45,99 @@
|
|
45 |
# code2
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# import pandas as pd
|
49 |
# import numpy as np
|
50 |
# from datetime import datetime, timedelta
|
51 |
-
# import requests
|
52 |
|
53 |
-
# # Function to fetch
|
54 |
-
# def fetch_weather(api_key, location):
|
55 |
-
# url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
56 |
-
# response = requests.get(url).json()
|
57 |
-
# if response["cod"] == 200:
|
58 |
-
# return {
|
59 |
-
# "temperature": response["main"]["temp"],
|
60 |
-
# "wind_speed": response["wind"]["speed"],
|
61 |
-
# "weather": response["weather"][0]["description"]
|
62 |
-
# }
|
63 |
-
# return None
|
64 |
|
65 |
-
# # Generate synthetic data
|
66 |
# def generate_synthetic_data():
|
67 |
# time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
68 |
# return pd.DataFrame({
|
69 |
# "timestamp": time_index,
|
70 |
-
# "
|
71 |
-
# "grid_generation_mw": np.random.randint(
|
72 |
-
# "storage_utilization_mw": np.random.randint(
|
|
|
73 |
# })
|
74 |
|
75 |
-
# # Generate storage data
|
76 |
# def generate_storage_data():
|
|
|
|
|
|
|
|
|
77 |
# return {
|
78 |
-
# "
|
79 |
-
# "
|
80 |
-
# "
|
81 |
-
# "
|
82 |
# }
|
83 |
|
84 |
-
# #
|
85 |
-
#
|
86 |
-
#
|
87 |
-
|
88 |
-
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
# Function to fetch weather data remains unchanged
|
95 |
-
|
96 |
-
# Generate synthetic grid data
|
97 |
-
def generate_synthetic_data():
|
98 |
-
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
99 |
-
return pd.DataFrame({
|
100 |
-
"timestamp": time_index,
|
101 |
-
"power_consumption_mw": np.random.randint(50, 200, len(time_index)),
|
102 |
-
"grid_generation_mw": np.random.randint(30, 150, len(time_index)),
|
103 |
-
"storage_utilization_mw": np.random.randint(10, 50, len(time_index)),
|
104 |
-
"grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
105 |
-
})
|
106 |
-
|
107 |
-
# Generate synthetic storage data
|
108 |
-
def generate_storage_data():
|
109 |
-
wind_storage = np.random.randint(5, 15)
|
110 |
-
solar_storage = np.random.randint(7, 20)
|
111 |
-
turbine_storage = np.random.randint(10, 25)
|
112 |
-
total_storage = wind_storage + solar_storage + turbine_storage
|
113 |
-
return {
|
114 |
-
"wind_storage_mw": wind_storage,
|
115 |
-
"solar_storage_mw": solar_storage,
|
116 |
-
"turbine_storage_mw": turbine_storage,
|
117 |
-
"total_storage_mw": total_storage
|
118 |
-
}
|
119 |
-
|
120 |
-
# Generate synthetic trade data
|
121 |
-
def generate_trade_data():
|
122 |
-
countries = ["Country A", "Country B", "Country C"]
|
123 |
-
exports = np.random.randint(10, 50, len(countries))
|
124 |
-
imports = np.random.randint(5, 30, len(countries))
|
125 |
-
return pd.DataFrame({
|
126 |
-
"country": countries,
|
127 |
-
"exports_mw": exports,
|
128 |
-
"imports_mw": imports
|
129 |
-
})
|
130 |
|
131 |
-
# Updated optimization recommendation
|
132 |
-
def optimize_load(demand, generation, storage):
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
# Export functions
|
141 |
-
if __name__ == "__main__":
|
142 |
-
|
143 |
|
|
|
45 |
# code2
|
46 |
|
47 |
|
48 |
+
import pandas as pd
|
49 |
+
import numpy as np
|
50 |
+
from datetime import datetime, timedelta
|
51 |
+
import requests
|
52 |
+
|
53 |
+
# Function to fetch real-time weather data
|
54 |
+
def fetch_weather(api_key, location):
|
55 |
+
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
56 |
+
response = requests.get(url).json()
|
57 |
+
if response["cod"] == 200:
|
58 |
+
return {
|
59 |
+
"temperature": response["main"]["temp"],
|
60 |
+
"wind_speed": response["wind"]["speed"],
|
61 |
+
"weather": response["weather"][0]["description"]
|
62 |
+
}
|
63 |
+
return None
|
64 |
+
|
65 |
+
# Generate synthetic data
|
66 |
+
def generate_synthetic_data():
|
67 |
+
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
68 |
+
return pd.DataFrame({
|
69 |
+
"timestamp": time_index,
|
70 |
+
"total_power_consumption_mw": np.random.randint(200, 500, len(time_index)),
|
71 |
+
"grid_generation_mw": np.random.randint(100, 300, len(time_index)),
|
72 |
+
"storage_utilization_mw": np.random.randint(50, 150, len(time_index)),
|
73 |
+
})
|
74 |
+
|
75 |
+
# Generate storage data
|
76 |
+
def generate_storage_data():
|
77 |
+
return {
|
78 |
+
"wind": 5,
|
79 |
+
"solar": 7,
|
80 |
+
"turbine": 10,
|
81 |
+
"total_stored_kwh": 2000
|
82 |
+
}
|
83 |
+
|
84 |
+
# Export functions for use in Streamlit
|
85 |
+
if __name__ == "__main__":
|
86 |
+
print("Backend ready!")
|
87 |
+
|
88 |
+
|
89 |
+
# code 3
|
90 |
# import pandas as pd
|
91 |
# import numpy as np
|
92 |
# from datetime import datetime, timedelta
|
|
|
93 |
|
94 |
+
# # Function to fetch weather data remains unchanged
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
# # Generate synthetic grid data
|
97 |
# def generate_synthetic_data():
|
98 |
# time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
99 |
# return pd.DataFrame({
|
100 |
# "timestamp": time_index,
|
101 |
+
# "power_consumption_mw": np.random.randint(50, 200, len(time_index)),
|
102 |
+
# "grid_generation_mw": np.random.randint(30, 150, len(time_index)),
|
103 |
+
# "storage_utilization_mw": np.random.randint(10, 50, len(time_index)),
|
104 |
+
# "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
105 |
# })
|
106 |
|
107 |
+
# # Generate synthetic storage data
|
108 |
# def generate_storage_data():
|
109 |
+
# wind_storage = np.random.randint(5, 15)
|
110 |
+
# solar_storage = np.random.randint(7, 20)
|
111 |
+
# turbine_storage = np.random.randint(10, 25)
|
112 |
+
# total_storage = wind_storage + solar_storage + turbine_storage
|
113 |
# return {
|
114 |
+
# "wind_storage_mw": wind_storage,
|
115 |
+
# "solar_storage_mw": solar_storage,
|
116 |
+
# "turbine_storage_mw": turbine_storage,
|
117 |
+
# "total_storage_mw": total_storage
|
118 |
# }
|
119 |
|
120 |
+
# # Generate synthetic trade data
|
121 |
+
# def generate_trade_data():
|
122 |
+
# countries = ["Country A", "Country B", "Country C"]
|
123 |
+
# exports = np.random.randint(10, 50, len(countries))
|
124 |
+
# imports = np.random.randint(5, 30, len(countries))
|
125 |
+
# return pd.DataFrame({
|
126 |
+
# "country": countries,
|
127 |
+
# "exports_mw": exports,
|
128 |
+
# "imports_mw": imports
|
129 |
+
# })
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
# # Updated optimization recommendation
|
132 |
+
# def optimize_load(demand, generation, storage):
|
133 |
+
# if generation + storage >= demand:
|
134 |
+
# return "Grid is Stable with Current Supply"
|
135 |
+
# elif demand - (generation + storage) < 20:
|
136 |
+
# return "Activate Backup or Optimize Load"
|
137 |
+
# else:
|
138 |
+
# return "Immediate Action Required: Adjust Load or Increase Generation"
|
139 |
|
140 |
+
# # Export functions
|
141 |
+
# if __name__ == "__main__":
|
142 |
+
# print("Backend ready for enhanced dashboard!")
|
143 |
|