File size: 6,758 Bytes
7b65368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d8be7
 
 
 
 
 
 
 
 
 
6975221
34a43e5
f9d8be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390829c
f9d8be7
 
 
 
 
 
 
 
 
db64fe3
 
390829c
f9d8be7
db64fe3
 
390829c
db64fe3
 
 
390829c
db64fe3
 
 
 
 
f9d8be7
 
 
db64fe3
 
f9d8be7
db64fe3
 
 
 
f9d8be7
db64fe3
 
f9d8be7
db64fe3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# import os
# from groq import Groq
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.vectorstores import FAISS
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from PyPDF2 import PdfReader
# import streamlit as st
# from tempfile import NamedTemporaryFile

# # Initialize Groq client
# client = Groq(api_key=os.getenv("Groq_api_key"))
# # client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# # Function to extract text from a PDF
# def extract_text_from_pdf(pdf_file_path):
#     pdf_reader = PdfReader(pdf_file_path)
#     text = ""
#     for page in pdf_reader.pages:
#         text += page.extract_text()
#     return text

# # Function to split text into chunks
# def chunk_text(text, chunk_size=500, chunk_overlap=50):
#     text_splitter = RecursiveCharacterTextSplitter(
#         chunk_size=chunk_size, chunk_overlap=chunk_overlap
#     )
#     return text_splitter.split_text(text)

# # Function to create embeddings and store them in FAISS
# def create_embeddings_and_store(chunks):
#     embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
#     vector_db = FAISS.from_texts(chunks, embedding=embeddings)
#     return vector_db

# # Function to query the vector database and interact with Groq
# def query_vector_db(query, vector_db):
#     # Retrieve relevant documents
#     docs = vector_db.similarity_search(query, k=3)
#     context = "\n".join([doc.page_content for doc in docs])

#     # Interact with Groq API
#     chat_completion = client.chat.completions.create(
#         messages=[
#             {"role": "system", "content": f"Use the following context:\n{context}"},
#             {"role": "user", "content": query},
#         ],
#         model="llama3-8b-8192",
#     )
#     return chat_completion.choices[0].message.content

# # Streamlit app
# st.title("Interactive PDF Reader and Chat")

# # Upload PDF
# uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"])

# if uploaded_file:
#     with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
#         temp_file.write(uploaded_file.read())
#         pdf_path = temp_file.name

#     # Extract text, chunk it, and create embeddings
#     text = extract_text_from_pdf(pdf_path)
#     chunks = chunk_text(text)
#     vector_db = create_embeddings_and_store(chunks)

#     # State management for the chat
#     if "chat_history" not in st.session_state:
#         st.session_state.chat_history = []

#     # Display chat history
#     for i, chat in enumerate(st.session_state.chat_history):
#         st.write(f"**Query {i+1}:** {chat['query']}")
#         st.write(f"**Response:** {chat['response']}")
#         st.write("---")

#     # Add new query input dynamically
#     if "query_count" not in st.session_state:
#         st.session_state.query_count = 1

#     query_key = f"query_{st.session_state.query_count}"
#     user_query = st.text_input(f"Enter Query {st.session_state.query_count}:", key=query_key)

#     if user_query:
#         # Generate response
#         response = query_vector_db(user_query, vector_db)

#         # Append query and response to the chat history
#         st.session_state.chat_history.append({"query": user_query, "response": response})

#         # Increment query count for the next input box
#         st.session_state.query_count += 1

#         # Rerun to show the updated UI
#         st.experimental_rerun()

import os
from groq import Groq
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
import streamlit as st
from tempfile import NamedTemporaryFile

# Initialize Groq client
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
client = Groq(api_key=os.getenv("Groq_api_key"))

# Function to extract text from a PDF
def extract_text_from_pdf(pdf_file_path):
    pdf_reader = PdfReader(pdf_file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text

# Function to split text into chunks
def chunk_text(text, chunk_size=500, chunk_overlap=50):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    return text_splitter.split_text(text)

# Function to create embeddings and store them in FAISS
def create_embeddings_and_store(chunks):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vector_db = FAISS.from_texts(chunks, embedding=embeddings)
    return vector_db

# Function to query the vector database and interact with Groq
def query_vector_db(query, vector_db):
    # Retrieve relevant documents
    docs = vector_db.similarity_search(query, k=3)
    context = "\n".join([doc.page_content for doc in docs])

    # Interact with Groq API
    chat_completion = client.chat.completions.create(
        messages=[
            {"role": "system", "content": f"Use the following context:\n{context}"},
            {"role": "user", "content": query},
        ],
        model="llama3-8b-8192",
    )
    return chat_completion.choices[0].message.content

# Streamlit app
st.title("Pdf reading AI Application")

# Upload PDF
uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"])

if uploaded_file:
    with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
        temp_file.write(uploaded_file.read())
        pdf_path = temp_file.name

    # Extract text
    text = extract_text_from_pdf(pdf_path)
    # st.write("PDF Text Extracted Successfully!")

    # Chunk text
    chunks = chunk_text(text)
    # st.write("Text Chunked Successfully!")

    # Generate embeddings and store in FAISS
    vector_db = create_embeddings_and_store(chunks)
    # st.write("Embeddings Generated and Stored Successfully!")

    # Interactive chat section
    st.write("### Interactive Chat Section")

    # State management for chat history
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []

    # User query input
    user_query = st.text_input("Enter your query:", key="user_query")

    if st.button("Submit Query"):
        if user_query:
            # Get response from the model
            response = query_vector_db(user_query, vector_db)

            # Append the query and response to the chat history
            st.session_state.chat_history.append({"query": user_query, "response": response})

    # Display chat history
    for chat in st.session_state.chat_history:
        st.write(f"**User Query:** {chat['query']}")
        st.write(f"**Response:** {chat['response']}")
        st.write("---")