heatmap / heatmap_generator.py
noumanjavaid's picture
Upload heatmap_generator.py
1390aae verified
import cv2
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from image_processor import ImageProcessor
class HeatmapGenerator:
def __init__(self):
"""
Initialize the heatmap generator for visualizing threat areas
"""
self.image_processor = ImageProcessor()
# Define colormap options
self.colormap_options = {
'hot': cv2.COLORMAP_HOT, # Red-yellow-white, good for high intensity
'jet': cv2.COLORMAP_JET, # Blue-cyan-yellow-red, good for range
'inferno': cv2.COLORMAP_INFERNO, # Purple-red-yellow, good for threat
'plasma': cv2.COLORMAP_PLASMA # Purple-red-yellow, alternative
}
# Default colormap
self.default_colormap = 'inferno'
def generate_heatmap_from_diff(self, diff_image, threshold=0, blur_size=15):
"""
Generate a heatmap directly from a difference image
Args:
diff_image: Difference image (0-255 range)
threshold: Minimum difference value to consider (0-255)
blur_size: Size of Gaussian blur kernel for smoothing
Returns:
Heatmap image
"""
# Apply threshold to filter out low differences
_, thresholded = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_TOZERO)
# Apply Gaussian blur to smooth the heatmap
if blur_size > 0:
blurred = cv2.GaussianBlur(thresholded, (blur_size, blur_size), 0)
else:
blurred = thresholded
# Apply colormap
heatmap = cv2.applyColorMap(blurred, self.colormap_options[self.default_colormap])
# Convert to RGB for consistent display
heatmap_rgb = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
return heatmap_rgb
def generate_heatmap_from_regions(self, image_shape, labeled_regions, sigma=40):
"""
Generate a heatmap from labeled regions based on threat levels
Args:
image_shape: Shape of the original image (height, width)
labeled_regions: List of regions with threat levels from ThreatLabeler
sigma: Standard deviation for Gaussian kernel
Returns:
Heatmap image
"""
# Create an empty heatmap
height, width = image_shape[:2]
heatmap = np.zeros((height, width), dtype=np.float32)
# Define threat level weights with increased intensity
threat_weights = {
'low': 0.4,
'medium': 0.7,
'high': 1.0
}
# Add each region to the heatmap with appropriate weight
for region in labeled_regions:
bbox = region['bbox']
threat_level = region['threat_level']
diff_percentage = region['difference_percentage']
# Calculate center of bounding box
x, y, w, h = bbox
center_x, center_y = x + w // 2, y + h // 2
# Calculate intensity based on threat level and difference percentage with increased brightness
intensity = threat_weights[threat_level] * (diff_percentage / 100) * 1.2
# Create a Gaussian kernel centered at the region with increased sigma for more circular spread
y_coords, x_coords = np.ogrid[:height, :width]
dist_from_center = ((y_coords - center_y) ** 2 + (x_coords - center_x) ** 2) / (2 * sigma ** 2)
kernel = np.exp(-dist_from_center) * intensity
# Add to heatmap
heatmap += kernel
# Normalize heatmap to 0-255 range
if np.max(heatmap) > 0: # Avoid division by zero
heatmap = (heatmap / np.max(heatmap) * 255).astype(np.uint8)
else:
heatmap = np.zeros((height, width), dtype=np.uint8)
# Apply colormap
colored_heatmap = cv2.applyColorMap(heatmap, self.colormap_options[self.default_colormap])
colored_heatmap = cv2.cvtColor(colored_heatmap, cv2.COLOR_BGR2RGB)
return colored_heatmap
def overlay_heatmap(self, original_image, heatmap, alpha=0.6):
"""
Overlay heatmap on original image
Args:
original_image: Original image
heatmap: Heatmap image
alpha: Transparency factor (0-1)
Returns:
Overlaid image
"""
# Ensure images are the same size
if original_image.shape[:2] != heatmap.shape[:2]:
heatmap = cv2.resize(heatmap, (original_image.shape[1], original_image.shape[0]))
# Overlay heatmap on original image
return self.image_processor.overlay_images(original_image, heatmap, alpha)
def generate_threat_heatmap(self, image, labeled_regions, overlay=True, alpha=0.6):
"""
Generate a complete threat heatmap visualization
Args:
image: Original image
labeled_regions: List of regions with threat levels
overlay: Whether to overlay on original image
alpha: Transparency for overlay
Returns:
Heatmap image or overlaid image
"""
# Generate heatmap from labeled regions
heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
# Overlay on original image if requested
if overlay:
return self.overlay_heatmap(image, heatmap, alpha)
else:
return heatmap
def save_heatmap_visualization(self, image, heatmap, output_path, dpi=300):
"""
Save a side-by-side visualization of original image and heatmap
Args:
image: Original image
heatmap: Heatmap image
output_path: Path to save visualization
dpi: Resolution for saved image
"""
# Create figure with two subplots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
# Display original image
ax1.imshow(image)
ax1.set_title('Original Image')
ax1.axis('off')
# Display heatmap
ax2.imshow(heatmap)
ax2.set_title('Threat Heatmap')
ax2.axis('off')
# Save figure
plt.tight_layout()
plt.savefig(output_path, dpi=dpi, bbox_inches='tight')
plt.close()
def generate_multi_level_heatmap(self, image, labeled_regions):
"""
Generate separate heatmaps for each threat level
Args:
image: Original image
labeled_regions: List of regions with threat levels
Returns:
Dictionary with heatmaps for each threat level and combined
"""
# Create separate lists for each threat level
low_regions = [r for r in labeled_regions if r['threat_level'] == 'low']
medium_regions = [r for r in labeled_regions if r['threat_level'] == 'medium']
high_regions = [r for r in labeled_regions if r['threat_level'] == 'high']
# Generate heatmaps for each level
low_heatmap = self.generate_heatmap_from_regions(image.shape, low_regions)
medium_heatmap = self.generate_heatmap_from_regions(image.shape, medium_regions)
high_heatmap = self.generate_heatmap_from_regions(image.shape, high_regions)
# Generate combined heatmap
combined_heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
# Overlay all on original image
combined_overlay = self.overlay_heatmap(image, combined_heatmap)
return {
'low': low_heatmap,
'medium': medium_heatmap,
'high': high_heatmap,
'combined': combined_heatmap,
'overlay': combined_overlay
}