Leonard Bruns
Add Vista example
d323598
from __future__ import annotations
from abc import abstractmethod
from typing import Iterable, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.utils.checkpoint import checkpoint
from ...modules.attention import SpatialTransformer
from ...modules.video_attention import SpatialVideoTransformer
from .util import avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module
class TimestepBlock(nn.Module):
"""Any module where forward() takes timestep embeddings as a second argument."""
@abstractmethod
def forward(self, x: torch.Tensor, emb: torch.Tensor):
"""Apply the module to `x` given `emb` timestep embeddings."""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""A sequential module that passes timestep embeddings to the children that support it as an extra input."""
def forward(
self,
x: torch.Tensor,
emb: torch.Tensor,
context: Optional[torch.Tensor] = None,
time_context: Optional[int] = None,
num_frames: Optional[int] = None
):
from .video_model import VideoResBlock
for layer in self:
if isinstance(layer, VideoResBlock):
x = layer(x, emb, num_frames)
elif isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialVideoTransformer):
x = layer(x, context, time_context, num_frames)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions.
"""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
third_up: bool = False,
kernel_size: int = 3,
scale_factor: int = 2
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
self.third_up = third_up
self.scale_factor = scale_factor
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, kernel_size, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[1] == self.channels
if self.dims == 3:
t_factor = 1 if not self.third_up else self.scale_factor
x = F.interpolate(
x,
(
t_factor * x.shape[2],
x.shape[3] * self.scale_factor,
x.shape[4] * self.scale_factor
),
mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions.
"""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
third_down: bool = False
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2))
if use_conv:
print(f"Building a downsample layer with {dims} dims")
print(
f"Settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, "
f"kernel-size: 3, stride: {stride}, padding: {padding}"
)
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels: int,
emb_channels: int,
dropout: float,
out_channels: Optional[int] = None,
use_conv: bool = False,
use_scale_shift_norm: bool = False,
dims: int = 2,
use_checkpoint: bool = False,
up: bool = False,
down: bool = False,
kernel_size: int = 3,
exchange_temb_dims: bool = False,
skip_t_emb: bool = False,
causal: bool = False
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.exchange_temb_dims = exchange_temb_dims
if isinstance(kernel_size, Iterable):
padding = [k // 2 for k in kernel_size]
else:
padding = kernel_size // 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, causal=causal)
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.skip_t_emb = skip_t_emb
self.emb_out_channels = (
2 * self.out_channels if use_scale_shift_norm else self.out_channels
)
if self.skip_t_emb:
print(f"Skipping timestep embedding in {self.__class__.__name__}")
assert not self.use_scale_shift_norm
self.emb_layers = None
self.exchange_temb_dims = False
else:
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(emb_channels, self.emb_out_channels)
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, causal=causal)
)
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
if self.use_checkpoint:
return checkpoint(self._forward, x, emb)
else:
return self._forward(x, emb)
def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
if self.skip_t_emb:
emb_out = torch.zeros_like(h)
else:
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = torch.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
if self.exchange_temb_dims:
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class Timestep(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.dim = dim
def forward(self, t: torch.Tensor) -> torch.Tensor:
return timestep_embedding(t, self.dim)