Leonard Bruns
Add Vista example
d323598
"""
Partially adopted from
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
and
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
and
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py.
"""
from __future__ import annotations
import math
from typing import Iterable
import torch
import torch.fft as fft # differentiable
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
def fourier_filter(x, scale, d_s=0.25):
dtype = x.dtype
x = x.type(torch.float32)
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W)).cuda()
for h in range(H):
for w in range(W):
d_square = (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2
if d_square <= 2 * d_s:
mask[..., h, w] = scale
x_freq = x_freq * mask
# IFFT
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
x_filtered = x_filtered.type(dtype)
return x_filtered
def fourier_filter_3d(x, scale, num_frames, d_s=0.25, d_t=0.25):
dtype = x.dtype
x = x.type(torch.float32)
x_ = rearrange(x, "(b t) c h w -> b c t h w", t=num_frames)
# FFT
x_freq = fft.fftn(x_, dim=(-3, -2, -1))
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
B, C, T, H, W = x_freq.shape
mask = torch.ones((B, C, T, H, W)).cuda()
for t in range(T):
for h in range(H):
for w in range(W):
d_square = (d_s / d_t * (2 * t / T - 1)) ** 2 + (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2
if d_square <= 2 * d_s:
mask[..., t, h, w] = scale
x_freq = x_freq * mask
# IFFT
x_freq = fft.ifftshift(x_freq, dim=(-3, -2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-3, -2, -1)).real
x_filtered = rearrange(x_filtered, "b c t h w -> (b t) c h w")
x_filtered = x_filtered.type(dtype)
return x_filtered
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2):
if schedule == "linear":
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
return betas.numpy()
if schedule == "scaled_linear":
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
return betas.numpy()
else:
raise NotImplementedError(f"Unknown schedule: {schedule}")
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
ctx.gpu_autocast_kwargs = {
"enabled": torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled()
}
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
ctx.input_params = [x.requires_grad_(True) for x in ctx.input_params]
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
# fixes a bug where the first op in run_function modifies the Tensor storage in place,
# which is not allowed for detach()'d Tensors
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
output_tensors = ctx.run_function(*shallow_copies)
input_grads = torch.autograd.grad(
output_tensors,
ctx.input_tensors + ctx.input_params,
output_grads,
allow_unused=True
)
del ctx.input_tensors
del ctx.input_params
del output_tensors
return (None, None) + input_grads
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if repeat_only:
embedding = repeat(timesteps, "b -> b d", d=dim)
else:
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat((torch.cos(args), torch.sin(args)), dim=-1)
if dim % 2:
embedding = torch.cat((embedding, torch.zeros_like(embedding[:, :1])), dim=-1)
return embedding
def zero_module(module):
"""Zero out the parameters of a module and return it."""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""Scale the parameters of a module and return it."""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""Take the mean over all non-batch dimensions."""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: nn.Module for normalization.
"""
return GroupNorm32(32, channels)
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
class CausalConv3d(nn.Conv3d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, **kwargs):
super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0)
# make causal padding
assert isinstance(kernel_size, Iterable) and len(kernel_size) == 3 and kernel_size[-1] == kernel_size[-2]
temporal_padding = [kernel_size[0] - 1, 0] # causal padding on temporal dimension
spatial_padding = [kernel_size[-1] // 2] * 4 # keep padding on spatial dimension
causal_padding = tuple(spatial_padding + temporal_padding) # starting from the last dimension
self.causal_padding = causal_padding
def forward(self, x):
x = F.pad(x, self.causal_padding)
x = super().forward(x)
return x
def conv_nd(dims, *args, causal=False, **kwargs):
"""Create a 1D, 2D, or 3D convolution module."""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
if causal:
return CausalConv3d(*args, **kwargs)
else:
return nn.Conv3d(*args, **kwargs)
else:
raise ValueError(f"Unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""Create a linear module."""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""Create a 1D, 2D, or 3D average pooling module."""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
else:
raise ValueError(f"Unsupported dimensions: {dims}")
class AlphaBlender(nn.Module):
strategies = ["learned", "fixed", "learned_with_images"]
def __init__(
self,
alpha: float,
merge_strategy: str,
rearrange_pattern: str
):
super().__init__()
self.merge_strategy = merge_strategy
self.rearrange_pattern = rearrange_pattern
assert merge_strategy in self.strategies, f"merge_strategy needs to be in {self.strategies}"
if self.merge_strategy == "fixed":
self.register_buffer("mix_factor", torch.Tensor([alpha]))
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images":
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha])))
else:
raise ValueError(f"Unknown merge strategy {self.merge_strategy}")
def get_alpha(self) -> torch.Tensor:
if self.merge_strategy == "fixed":
alpha = self.mix_factor
elif self.merge_strategy == "learned":
alpha = torch.sigmoid(self.mix_factor)
elif self.merge_strategy == "learned_with_images":
alpha = rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1")
alpha = rearrange(alpha, self.rearrange_pattern)
else:
raise NotImplementedError
return alpha
def forward(
self,
x_spatial: torch.Tensor,
x_temporal: torch.Tensor
) -> torch.Tensor:
alpha = self.get_alpha()
x = alpha.to(x_spatial.dtype) * x_spatial + (1.0 - alpha).to(x_spatial.dtype) * x_temporal
return x