Spaces:
Build error
Build error
""" | |
Partially adopted from | |
https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py | |
and | |
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
and | |
https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py. | |
""" | |
from __future__ import annotations | |
import math | |
from typing import Iterable | |
import torch | |
import torch.fft as fft # differentiable | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
def fourier_filter(x, scale, d_s=0.25): | |
dtype = x.dtype | |
x = x.type(torch.float32) | |
# FFT | |
x_freq = fft.fftn(x, dim=(-2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-2, -1)) | |
B, C, H, W = x_freq.shape | |
mask = torch.ones((B, C, H, W)).cuda() | |
for h in range(H): | |
for w in range(W): | |
d_square = (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2 | |
if d_square <= 2 * d_s: | |
mask[..., h, w] = scale | |
x_freq = x_freq * mask | |
# IFFT | |
x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) | |
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real | |
x_filtered = x_filtered.type(dtype) | |
return x_filtered | |
def fourier_filter_3d(x, scale, num_frames, d_s=0.25, d_t=0.25): | |
dtype = x.dtype | |
x = x.type(torch.float32) | |
x_ = rearrange(x, "(b t) c h w -> b c t h w", t=num_frames) | |
# FFT | |
x_freq = fft.fftn(x_, dim=(-3, -2, -1)) | |
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) | |
B, C, T, H, W = x_freq.shape | |
mask = torch.ones((B, C, T, H, W)).cuda() | |
for t in range(T): | |
for h in range(H): | |
for w in range(W): | |
d_square = (d_s / d_t * (2 * t / T - 1)) ** 2 + (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2 | |
if d_square <= 2 * d_s: | |
mask[..., t, h, w] = scale | |
x_freq = x_freq * mask | |
# IFFT | |
x_freq = fft.ifftshift(x_freq, dim=(-3, -2, -1)) | |
x_filtered = fft.ifftn(x_freq, dim=(-3, -2, -1)).real | |
x_filtered = rearrange(x_filtered, "b c t h w -> (b t) c h w") | |
x_filtered = x_filtered.type(dtype) | |
return x_filtered | |
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2): | |
if schedule == "linear": | |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
return betas.numpy() | |
if schedule == "scaled_linear": | |
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
return betas.numpy() | |
else: | |
raise NotImplementedError(f"Unknown schedule: {schedule}") | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
ctx.gpu_autocast_kwargs = { | |
"enabled": torch.is_autocast_enabled(), | |
"dtype": torch.get_autocast_gpu_dtype(), | |
"cache_enabled": torch.is_autocast_cache_enabled() | |
} | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_params = [x.requires_grad_(True) for x in ctx.input_params] | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): | |
# fixes a bug where the first op in run_function modifies the Tensor storage in place, | |
# which is not allowed for detach()'d Tensors | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
if repeat_only: | |
embedding = repeat(timesteps, "b -> b d", d=dim) | |
else: | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat((torch.cos(args), torch.sin(args)), dim=-1) | |
if dim % 2: | |
embedding = torch.cat((embedding, torch.zeros_like(embedding[:, :1])), dim=-1) | |
return embedding | |
def zero_module(module): | |
"""Zero out the parameters of a module and return it.""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
"""Scale the parameters of a module and return it.""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
"""Take the mean over all non-batch dimensions.""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5 | |
class SiLU(nn.Module): | |
def forward(self, x): | |
return x * torch.sigmoid(x) | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
class CausalConv3d(nn.Conv3d): | |
def __init__(self, in_channels, out_channels, kernel_size, stride=1, **kwargs): | |
super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0) | |
# make causal padding | |
assert isinstance(kernel_size, Iterable) and len(kernel_size) == 3 and kernel_size[-1] == kernel_size[-2] | |
temporal_padding = [kernel_size[0] - 1, 0] # causal padding on temporal dimension | |
spatial_padding = [kernel_size[-1] // 2] * 4 # keep padding on spatial dimension | |
causal_padding = tuple(spatial_padding + temporal_padding) # starting from the last dimension | |
self.causal_padding = causal_padding | |
def forward(self, x): | |
x = F.pad(x, self.causal_padding) | |
x = super().forward(x) | |
return x | |
def conv_nd(dims, *args, causal=False, **kwargs): | |
"""Create a 1D, 2D, or 3D convolution module.""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
if causal: | |
return CausalConv3d(*args, **kwargs) | |
else: | |
return nn.Conv3d(*args, **kwargs) | |
else: | |
raise ValueError(f"Unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
"""Create a linear module.""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
"""Create a 1D, 2D, or 3D average pooling module.""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
else: | |
raise ValueError(f"Unsupported dimensions: {dims}") | |
class AlphaBlender(nn.Module): | |
strategies = ["learned", "fixed", "learned_with_images"] | |
def __init__( | |
self, | |
alpha: float, | |
merge_strategy: str, | |
rearrange_pattern: str | |
): | |
super().__init__() | |
self.merge_strategy = merge_strategy | |
self.rearrange_pattern = rearrange_pattern | |
assert merge_strategy in self.strategies, f"merge_strategy needs to be in {self.strategies}" | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images": | |
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) | |
else: | |
raise ValueError(f"Unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self) -> torch.Tensor: | |
if self.merge_strategy == "fixed": | |
alpha = self.mix_factor | |
elif self.merge_strategy == "learned": | |
alpha = torch.sigmoid(self.mix_factor) | |
elif self.merge_strategy == "learned_with_images": | |
alpha = rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1") | |
alpha = rearrange(alpha, self.rearrange_pattern) | |
else: | |
raise NotImplementedError | |
return alpha | |
def forward( | |
self, | |
x_spatial: torch.Tensor, | |
x_temporal: torch.Tensor | |
) -> torch.Tensor: | |
alpha = self.get_alpha() | |
x = alpha.to(x_spatial.dtype) * x_spatial + (1.0 - alpha).to(x_spatial.dtype) * x_temporal | |
return x | |