LingEval / app.py
research14's picture
test
738a5f6
raw
history blame
4.66 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import openai
openai.api_key = "OPENAI_API_KEY"
# Load the Vicuna 7B v1.3 LMSys model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
Noun
Determiner
Noun phrase
Verb phrase
Dependent Clause
T-units
def interface():
gr.Markdown(" Description ")
prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
openai_key = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
gr.Markdown("Strategy 1 QA-Based Prompting")
with gr.Row():
vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS])
gr.Markdown("Strategy 2 Instruction-Based Prompting")
with gr.Row():
vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS])
prompt_POS.submit(respond, [prompt_POS, vicuna_S1_chatbot_POS], [prompt_POS, vicuna_S1_chatbot_POS])
prompt_POS.submit(respond, [prompt_POS, vicuna_S2_chatbot_POS], [prompt_POS, vicuna_S2_chatbot_POS])
prompt_POS.submit(respond, [prompt_POS, vicuna_S3_chatbot_POS], [prompt_POS, vicuna_S3_chatbot_POS])
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
with gr.Tab("Noun"):
interface()
with gr.Tab("Determiner"):
gr.Markdown(" Description ")
prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
gr.Markdown("Strategy 1 QA")
with gr.Row():
vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
gr.Markdown("Strategy 2 Instruction")
with gr.Row():
vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
with gr.Tab("Noun phrase"):
interface()
with gr.Tab("Verb phrase"):
interface()
with gr.Tab("Dependent clause"):
interface()
with gr.Tab("T-units"):
interface()
def gpt3(prompt):
response = openai.ChatCompletion.create(
model='gpt3.5', messages=[{"role": "user", "content": prompt}])
return response['choices'][0]['message']['content']
def respond(message, chat_history):
input_ids = tokenizer.encode(message, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
demo.launch()