|
from abc import ABC |
|
from openai import OpenAI |
|
from FlagEmbedding import FlagModel |
|
import torch |
|
import os |
|
import numpy as np |
|
|
|
|
|
class Base(ABC): |
|
def encode(self, texts: list, batch_size=32): |
|
raise NotImplementedError("Please implement encode method!") |
|
|
|
|
|
class HuEmbedding(Base): |
|
def __init__(self): |
|
""" |
|
If you have trouble downloading HuggingFace models, -_^ this might help!! |
|
|
|
For Linux: |
|
export HF_ENDPOINT=https://hf-mirror.com |
|
|
|
For Windows: |
|
Good luck |
|
^_- |
|
|
|
""" |
|
self.model = FlagModel("BAAI/bge-large-zh-v1.5", |
|
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", |
|
use_fp16=torch.cuda.is_available()) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = [] |
|
for i in range(0, len(texts), batch_size): |
|
res.extend(self.model.encode(texts[i:i + batch_size]).tolist()) |
|
return np.array(res) |
|
|
|
|
|
class GptEmbed(Base): |
|
def __init__(self): |
|
self.client = OpenAI(api_key=os.envirement["OPENAI_API_KEY"]) |
|
|
|
def encode(self, texts: list, batch_size=32): |
|
res = self.client.embeddings.create(input=texts, |
|
model="text-embedding-ada-002") |
|
return [d["embedding"] for d in res["data"]] |
|
|
|
|
|
class QWenEmbd(Base): |
|
def encode(self, texts: list, batch_size=32, text_type="document"): |
|
|
|
import dashscope |
|
from http import HTTPStatus |
|
res = [] |
|
for txt in texts: |
|
resp = dashscope.TextEmbedding.call( |
|
model=dashscope.TextEmbedding.Models.text_embedding_v2, |
|
input=txt[:2048], |
|
text_type=text_type |
|
) |
|
res.append(resp["output"]["embeddings"][0]["embedding"]) |
|
return res |
|
|