|
import re |
|
from elasticsearch_dsl import Q, Search, A |
|
from typing import List, Optional, Tuple, Dict, Union |
|
from dataclasses import dataclass |
|
from util import setup_logging, rmSpace |
|
from nlp import huqie, query |
|
from datetime import datetime |
|
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity |
|
import numpy as np |
|
from copy import deepcopy |
|
|
|
|
|
def index_name(uid): return f"docgpt_{uid}" |
|
|
|
|
|
class Dealer: |
|
def __init__(self, es, emb_mdl): |
|
self.qryr = query.EsQueryer(es) |
|
self.qryr.flds = [ |
|
"title_tks^10", |
|
"title_sm_tks^5", |
|
"content_ltks^2", |
|
"content_sm_ltks"] |
|
self.es = es |
|
self.emb_mdl = emb_mdl |
|
|
|
@dataclass |
|
class SearchResult: |
|
total: int |
|
ids: List[str] |
|
query_vector: List[float] = None |
|
field: Optional[Dict] = None |
|
highlight: Optional[Dict] = None |
|
aggregation: Union[List, Dict, None] = None |
|
keywords: Optional[List[str]] = None |
|
group_docs: List[List] = None |
|
|
|
def _vector(self, txt, sim=0.8, topk=10): |
|
return { |
|
"field": "q_vec", |
|
"k": topk, |
|
"similarity": sim, |
|
"num_candidates": 1000, |
|
"query_vector": self.emb_mdl.encode_queries(txt) |
|
} |
|
|
|
def search(self, req, idxnm, tks_num=3): |
|
keywords = [] |
|
qst = req.get("question", "") |
|
|
|
bqry, keywords = self.qryr.question(qst) |
|
if req.get("kb_ids"): |
|
bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) |
|
bqry.filter.append(Q("exists", field="q_tks")) |
|
bqry.boost = 0.05 |
|
print(bqry) |
|
|
|
s = Search() |
|
pg = int(req.get("page", 1)) - 1 |
|
ps = int(req.get("size", 1000)) |
|
src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id", |
|
"image_id", "doc_id", "q_vec"]) |
|
|
|
s = s.query(bqry)[pg * ps:(pg + 1) * ps] |
|
s = s.highlight("content_ltks") |
|
s = s.highlight("title_ltks") |
|
if not qst: |
|
s = s.sort( |
|
{"create_time": {"order": "desc", "unmapped_type": "date"}}) |
|
|
|
s = s.highlight_options( |
|
fragment_size=120, |
|
number_of_fragments=5, |
|
boundary_scanner_locale="zh-CN", |
|
boundary_scanner="SENTENCE", |
|
boundary_chars=",./;:\\!(),。?:!……()——、" |
|
) |
|
s = s.to_dict() |
|
q_vec = [] |
|
if req.get("vector"): |
|
s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps) |
|
s["knn"]["filter"] = bqry.to_dict() |
|
del s["highlight"] |
|
q_vec = s["knn"]["query_vector"] |
|
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) |
|
print("TOTAL: ", self.es.getTotal(res)) |
|
if self.es.getTotal(res) == 0 and "knn" in s: |
|
bqry, _ = self.qryr.question(qst, min_match="10%") |
|
if req.get("kb_ids"): |
|
bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) |
|
s["query"] = bqry.to_dict() |
|
s["knn"]["filter"] = bqry.to_dict() |
|
s["knn"]["similarity"] = 0.7 |
|
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) |
|
|
|
kwds = set([]) |
|
for k in keywords: |
|
kwds.add(k) |
|
for kk in huqie.qieqie(k).split(" "): |
|
if len(kk) < 2: |
|
continue |
|
if kk in kwds: |
|
continue |
|
kwds.add(kk) |
|
|
|
aggs = self.getAggregation(res, "docnm_kwd") |
|
|
|
return self.SearchResult( |
|
total=self.es.getTotal(res), |
|
ids=self.es.getDocIds(res), |
|
query_vector=q_vec, |
|
aggregation=aggs, |
|
highlight=self.getHighlight(res), |
|
field=self.getFields(res, ["docnm_kwd", "content_ltks", |
|
"kb_id", "image_id", "doc_id", "q_vec"]), |
|
keywords=list(kwds) |
|
) |
|
|
|
def getAggregation(self, res, g): |
|
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]: |
|
return |
|
bkts = res["aggregations"]["aggs_" + g]["buckets"] |
|
return [(b["key"], b["doc_count"]) for b in bkts] |
|
|
|
def getHighlight(self, res): |
|
def rmspace(line): |
|
eng = set(list("qwertyuioplkjhgfdsazxcvbnm")) |
|
r = [] |
|
for t in line.split(" "): |
|
if not t: |
|
continue |
|
if len(r) > 0 and len( |
|
t) > 0 and r[-1][-1] in eng and t[0] in eng: |
|
r.append(" ") |
|
r.append(t) |
|
r = "".join(r) |
|
return r |
|
|
|
ans = {} |
|
for d in res["hits"]["hits"]: |
|
hlts = d.get("highlight") |
|
if not hlts: |
|
continue |
|
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]]) |
|
return ans |
|
|
|
def getFields(self, sres, flds): |
|
res = {} |
|
if not flds: |
|
return {} |
|
for d in self.es.getSource(sres): |
|
m = {n: d.get(n) for n in flds if d.get(n) is not None} |
|
for n, v in m.items(): |
|
if isinstance(v, type([])): |
|
m[n] = "\t".join([str(vv) for vv in v]) |
|
continue |
|
if not isinstance(v, type("")): |
|
m[n] = str(m[n]) |
|
m[n] = rmSpace(m[n]) |
|
|
|
if m: |
|
res[d["id"]] = m |
|
return res |
|
|
|
@staticmethod |
|
def trans2floats(txt): |
|
return [float(t) for t in txt.split("\t")] |
|
|
|
def insert_citations(self, ans, top_idx, sres, |
|
vfield="q_vec", cfield="content_ltks"): |
|
|
|
ins_embd = [Dealer.trans2floats( |
|
sres.field[sres.ids[i]][vfield]) for i in top_idx] |
|
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx] |
|
s = 0 |
|
e = 0 |
|
res = "" |
|
|
|
def citeit(): |
|
nonlocal s, e, ans, res |
|
if not ins_embd: |
|
return |
|
embd = self.emb_mdl.encode(ans[s: e]) |
|
sim = self.qryr.hybrid_similarity(embd, |
|
ins_embd, |
|
huqie.qie(ans[s:e]).split(" "), |
|
ins_tw) |
|
print(ans[s: e], sim) |
|
mx = np.max(sim) * 0.99 |
|
if mx < 0.55: |
|
return |
|
cita = list(set([top_idx[i] |
|
for i in range(len(ins_embd)) if sim[i] > mx]))[:4] |
|
for i in cita: |
|
res += f"@?{i}?@" |
|
|
|
return cita |
|
|
|
punct = set(";。?!!") |
|
if not self.qryr.isChinese(ans): |
|
punct.add("?") |
|
punct.add(".") |
|
while e < len(ans): |
|
if e - s < 12 or ans[e] not in punct: |
|
e += 1 |
|
continue |
|
if ans[e] == "." and e + \ |
|
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]): |
|
e += 1 |
|
continue |
|
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n": |
|
e += 1 |
|
continue |
|
res += ans[s: e] |
|
citeit() |
|
res += ans[e] |
|
e += 1 |
|
s = e |
|
|
|
if s < len(ans): |
|
res += ans[s:] |
|
citeit() |
|
|
|
return res |
|
|
|
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, |
|
vfield="q_vec", cfield="content_ltks"): |
|
ins_embd = [ |
|
Dealer.trans2floats( |
|
sres.field[i]["q_vec"]) for i in sres.ids] |
|
if not ins_embd: |
|
return [] |
|
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids] |
|
|
|
sim = self.qryr.hybrid_similarity(sres.query_vector, |
|
ins_embd, |
|
huqie.qie(query).split(" "), |
|
ins_tw, tkweight, vtweight) |
|
return sim |
|
|
|
|
|
if __name__ == "__main__": |
|
from util import es_conn |
|
SE = Dealer(es_conn.HuEs("infiniflow")) |
|
qs = [ |
|
"胡凯", |
|
"" |
|
] |
|
for q in qs: |
|
print(">>>>>>>>>>>>>>>>>>>>", q) |
|
print(SE.search( |
|
{"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*")) |
|
|