ragflow / python /nlp /search.py
KevinHuSh
add llm API (#19)
d0db329
raw
history blame
8.37 kB
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Tuple, Dict, Union
from dataclasses import dataclass
from util import setup_logging, rmSpace
from nlp import huqie, query
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
import numpy as np
from copy import deepcopy
def index_name(uid): return f"docgpt_{uid}"
class Dealer:
def __init__(self, es, emb_mdl):
self.qryr = query.EsQueryer(es)
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
self.emb_mdl = emb_mdl
@dataclass
class SearchResult:
total: int
ids: List[str]
query_vector: List[float] = None
field: Optional[Dict] = None
highlight: Optional[Dict] = None
aggregation: Union[List, Dict, None] = None
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def _vector(self, txt, sim=0.8, topk=10):
return {
"field": "q_vec",
"k": topk,
"similarity": sim,
"num_candidates": 1000,
"query_vector": self.emb_mdl.encode_queries(txt)
}
def search(self, req, idxnm, tks_num=3):
keywords = []
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst)
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
bqry.filter.append(Q("exists", field="q_tks"))
bqry.boost = 0.05
print(bqry)
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
"image_id", "doc_id", "q_vec"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
s = s.highlight("title_ltks")
if not qst:
s = s.sort(
{"create_time": {"order": "desc", "unmapped_type": "date"}})
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
s["knn"]["filter"] = bqry.to_dict()
del s["highlight"]
q_vec = s["knn"]["query_vector"]
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
print("TOTAL: ", self.es.getTotal(res))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.7
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
kwds = set([])
for k in keywords:
kwds.add(k)
for kk in huqie.qieqie(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
aggs = self.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=self.es.getTotal(res),
ids=self.es.getDocIds(res),
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res),
field=self.getFields(res, ["docnm_kwd", "content_ltks",
"kb_id", "image_id", "doc_id", "q_vec"]),
keywords=list(kwds)
)
def getAggregation(self, res, g):
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
return
bkts = res["aggregations"]["aggs_" + g]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
def getHighlight(self, res):
def rmspace(line):
eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
r = []
for t in line.split(" "):
if not t:
continue
if len(r) > 0 and len(
t) > 0 and r[-1][-1] in eng and t[0] in eng:
r.append(" ")
r.append(t)
r = "".join(r)
return r
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
return ans
def getFields(self, sres, flds):
res = {}
if not flds:
return {}
for d in self.es.getSource(sres):
m = {n: d.get(n) for n in flds if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, type([])):
m[n] = "\t".join([str(vv) for vv in v])
continue
if not isinstance(v, type("")):
m[n] = str(m[n])
m[n] = rmSpace(m[n])
if m:
res[d["id"]] = m
return res
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, ans, top_idx, sres,
vfield="q_vec", cfield="content_ltks"):
ins_embd = [Dealer.trans2floats(
sres.field[sres.ids[i]][vfield]) for i in top_idx]
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
s = 0
e = 0
res = ""
def citeit():
nonlocal s, e, ans, res
if not ins_embd:
return
embd = self.emb_mdl.encode(ans[s: e])
sim = self.qryr.hybrid_similarity(embd,
ins_embd,
huqie.qie(ans[s:e]).split(" "),
ins_tw)
print(ans[s: e], sim)
mx = np.max(sim) * 0.99
if mx < 0.55:
return
cita = list(set([top_idx[i]
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
for i in cita:
res += f"@?{i}?@"
return cita
punct = set(";。?!!")
if not self.qryr.isChinese(ans):
punct.add("?")
punct.add(".")
while e < len(ans):
if e - s < 12 or ans[e] not in punct:
e += 1
continue
if ans[e] == "." and e + \
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
e += 1
continue
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
e += 1
continue
res += ans[s: e]
citeit()
res += ans[e]
e += 1
s = e
if s < len(ans):
res += ans[s:]
citeit()
return res
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7,
vfield="q_vec", cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i]["q_vec"]) for i in sres.ids]
if not ins_embd:
return []
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
# return CosineSimilarity([sres.query_vector], ins_embd)[0]
sim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
return sim
if __name__ == "__main__":
from util import es_conn
SE = Dealer(es_conn.HuEs("infiniflow"))
qs = [
"胡凯",
""
]
for q in qs:
print(">>>>>>>>>>>>>>>>>>>>", q)
print(SE.search(
{"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))