Spaces:
Running
on
Zero
Running
on
Zero
# Authors: Hui Ren (rhfeiyang.github.io) | |
import os | |
import sys | |
import numpy as np | |
from PIL import Image | |
import pickle | |
sys.path.append(os.path.join(os.path.dirname(__file__), "../../../")) | |
from custom_datasets import get_dataset | |
from utils.art_filter import Art_filter | |
import torch | |
from matplotlib import pyplot as plt | |
import math | |
import argparse | |
import socket | |
import time | |
from tqdm import tqdm | |
import torch | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Filter the coco dataset") | |
parser.add_argument("--check", action="store_true", help="Check the complete") | |
parser.add_argument("--mode", default="clip_logit", help="Filter mode: clip_logit, clip_filt, caption_filt") | |
parser.add_argument("--split" , default="val", help="Dataset split, val/train") | |
# parser.add_argument("--start_idx", default=0, type=int, help="Start index") | |
args = parser.parse_args() | |
return args | |
def get_feat(save_path, dataloader, filter): | |
clip_feat_file = save_path | |
# compute_new = False | |
clip_feat={} | |
if os.path.exists(clip_feat_file): | |
with open(clip_feat_file, 'rb') as f: | |
clip_feat = pickle.load(f) | |
else: | |
print(f"computing clip feat",flush=True) | |
clip_feature_ret = filter.clip_feature(dataloader) | |
clip_feat["image_features"] = clip_feature_ret["clip_features"] | |
clip_feat["ids"] = clip_feature_ret["ids"] | |
with open(clip_feat_file, 'wb') as f: | |
pickle.dump(clip_feat, f) | |
print(f"clip_feat_result saved to {clip_feat_file}",flush=True) | |
return clip_feat | |
def get_clip_logit(save_root, dataloader, filter): | |
feat_path = os.path.join(save_root, "clip_feat.pickle") | |
clip_feat = get_feat(feat_path, dataloader, filter) | |
clip_logits_file = os.path.join(save_root, "clip_logits.pickle") | |
# if clip_logit: | |
if os.path.exists(clip_logits_file): | |
with open(clip_logits_file, 'rb') as f: | |
clip_logits = pickle.load(f) | |
else: | |
clip_logits = filter.clip_logit_by_feat(clip_feat["image_features"]) | |
clip_logits["ids"] = clip_feat["ids"] | |
with open(clip_logits_file, 'wb') as f: | |
pickle.dump(clip_logits, f) | |
print(f"clip_logits_result saved to {clip_logits_file}",flush=True) | |
return clip_logits | |
def clip_filt(save_root, dataloader, filter): | |
clip_filt_file = os.path.join(save_root, "clip_filt_result.pickle") | |
if os.path.exists(clip_filt_file): | |
with open(clip_filt_file, 'rb') as f: | |
clip_filt_result = pickle.load(f) | |
else: | |
clip_logits = get_clip_logit(save_root, dataloader, filter) | |
clip_filt_result = filter.clip_filt(clip_logits) | |
with open(clip_filt_file, 'wb') as f: | |
pickle.dump(clip_filt_result, f) | |
print(f"clip_filt_result saved to {clip_filt_file}",flush=True) | |
return clip_filt_result | |
def caption_filt(save_root, dataloader, filter): | |
caption_filt_file = os.path.join(save_root, "caption_filt_result.pickle") | |
if os.path.exists(caption_filt_file): | |
with open(caption_filt_file, 'rb') as f: | |
caption_filt_result = pickle.load(f) | |
else: | |
caption_filt_result = filter.caption_filt(dataloader) | |
with open(caption_filt_file, 'wb') as f: | |
pickle.dump(caption_filt_result, f) | |
print(f"caption_filt_result saved to {caption_filt_file}",flush=True) | |
return caption_filt_result | |
def gather_result(save_dir, dataloader, filter): | |
all_remain_ids=[] | |
all_remain_ids_train=[] | |
all_remain_ids_val=[] | |
all_filtered_id_num = 0 | |
clip_filt_result = clip_filt(save_dir, dataloader, filter) | |
caption_filt_result = caption_filt(save_dir, dataloader, filter) | |
caption_filtered_ids = [i[0] for i in caption_filt_result["filtered_ids"]] | |
all_filtered_id_num += len(set(clip_filt_result["filtered_ids"]) | set(caption_filtered_ids) ) | |
remain_ids = set(clip_filt_result["remain_ids"]) & set(caption_filt_result["remain_ids"]) | |
remain_ids = list(remain_ids) | |
remain_ids.sort() | |
with open(os.path.join(save_dir, "remain_ids.pickle"), 'wb') as f: | |
pickle.dump(remain_ids, f) | |
print(f"remain_ids saved to {save_dir}/remain_ids.pickle",flush=True) | |
return remain_ids | |
def main(args): | |
filter = Art_filter() | |
if args.mode == "caption_filt" or args.mode == "gather_result": | |
filter.clip_filter = None | |
torch.cuda.empty_cache() | |
# caption_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/PixArt-alpha/captions" | |
# image_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/images" | |
# id_dict_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/images/id_dict" | |
# filt_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/filt_result" | |
def collate_fn(examples): | |
# {"image": image, "id":id} | |
ret = {} | |
if "image" in examples[0]: | |
pixel_values = [example["image"] for example in examples] | |
ret["images"] = pixel_values | |
if "caption" in examples[0]: | |
# prompts = [example["caption"] for example in examples] | |
prompts = [] | |
for example in examples: | |
if isinstance(example["caption"][0], list): | |
prompts.append([" ".join(example["caption"][0])]) | |
else: | |
prompts.append(example["caption"]) | |
ret["text"] = prompts | |
id = [example["id"] for example in examples] | |
ret["ids"] = id | |
return ret | |
if args.split == "val": | |
dataset = get_dataset("coco_val")["val"] | |
elif args.split == "train": | |
dataset = get_dataset("coco_train", get_val=False)["train"] | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn) | |
error_files=[] | |
save_root = f"/vision-nfs/torralba/scratch/jomat/sam_dataset/coco/filt/{args.split}" | |
os.makedirs(save_root, exist_ok=True) | |
if args.mode == "clip_feat": | |
feat_path = os.path.join(save_root, "clip_feat.pickle") | |
clip_feat = get_feat(feat_path, dataloader, filter) | |
if args.mode == "clip_logit": | |
clip_logit = get_clip_logit(save_root, dataloader, filter) | |
if args.mode == "clip_filt": | |
# if os.path.exists(clip_filt_file): | |
# with open(clip_filt_file, 'rb') as f: | |
# ret = pickle.load(f) | |
# else: | |
clip_filt_result = clip_filt(save_root, dataloader, filter) | |
if args.mode == "caption_filt": | |
caption_filt_result = caption_filt(save_root, dataloader, filter) | |
if args.mode == "gather_result": | |
filtered_result = gather_result(save_root, dataloader, filter) | |
print("finished",flush=True) | |
for file in error_files: | |
# os.remove(file) | |
print(file,flush=True) | |
if __name__ == "__main__": | |
args = parse_args() | |
log_file = "sam_filt" | |
idx=0 | |
hostname = socket.gethostname() | |
now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) | |
while os.path.exists(f"{log_file}_{hostname}_check{args.check}_{now_time}_{idx}.log"): | |
idx+=1 | |
main(args) | |
# clip_logits_analysis() | |