Spaces:
Running
on
Zero
Running
on
Zero
# Authors: Hui Ren (rhfeiyang.github.io) | |
import os | |
import sys | |
import numpy as np | |
from PIL import Image | |
import pickle | |
sys.path.append(os.path.join(os.path.dirname(__file__), "../../")) | |
from custom_datasets.sam import SamDataset | |
from utils.art_filter import Art_filter | |
import torch | |
from matplotlib import pyplot as plt | |
import math | |
import argparse | |
import socket | |
import time | |
from tqdm import tqdm | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Filter the sam dataset") | |
parser.add_argument("--check", action="store_true", help="Check the complete") | |
parser.add_argument("--mode", default="clip_logit", choices=["clip_logit_update","clip_logit", "clip_filt", "caption_filt", "gather_result","caption_flit_append"]) | |
parser.add_argument("--start_idx", default=0, type=int, help="Start index") | |
parser.add_argument("--end_idx", default=9e10, type=int, help="Start index") | |
args = parser.parse_args() | |
return args | |
def main(args): | |
filter = Art_filter() | |
if args.mode == "caption_filt" or args.mode == "gather_result": | |
filter.clip_filter = None | |
torch.cuda.empty_cache() | |
caption_folder_path = "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/clip_dissection/SAM/subset/captions" | |
image_folder_path = "/vision-nfs/torralba/scratch/jomat/sam_dataset/nfs-data/sam/images" | |
id_dict_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/sam_ids/8.16/id_dict" | |
filt_dir = "/vision-nfs/torralba/scratch/jomat/sam_dataset/filt_result" | |
def collate_fn(examples): | |
# {"image": image, "id":id} | |
ret = {} | |
if "image" in examples[0]: | |
pixel_values = [example["image"] for example in examples] | |
ret["images"] = pixel_values | |
if "text" in examples[0]: | |
prompts = [example["text"] for example in examples] | |
ret["text"] = prompts | |
id = [example["id"] for example in examples] | |
ret["ids"] = id | |
return ret | |
error_files=[] | |
val_set = ["sa_000000"] | |
result_check_set = ["sa_000020"] | |
all_remain_ids=[] | |
all_remain_ids_train=[] | |
all_remain_ids_val=[] | |
all_filtered_id_num = 0 | |
remain_feat_num = 0 | |
remain_caption_num = 0 | |
filter_feat_num = 0 | |
filter_caption_num = 0 | |
for idx,file in tqdm(enumerate(sorted(os.listdir(id_dict_dir)))): | |
if idx < args.start_idx or idx >= args.end_idx: | |
continue | |
if file.endswith(".pickle") and not file.startswith("all"): | |
print("=====================================") | |
print(file,flush=True) | |
save_dir = os.path.join(filt_dir, file.replace("_id_dict.pickle", "")) | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir, exist_ok=True) | |
id_dict_file = os.path.join(id_dict_dir, file) | |
with open(id_dict_file, 'rb') as f: | |
id_dict = pickle.load(f) | |
ids = list(id_dict.keys()) | |
dataset = SamDataset(image_folder_path, caption_folder_path, id_file=ids, id_dict_file=id_dict_file) | |
# dataset = SamDataset(image_folder_path, caption_folder_path, id_file=[10061410, 10076945, 10310013,1042012, 4487809, 4541052], id_dict_file="/vision-nfs/torralba/scratch/jomat/sam_dataset/images/id_dict/all_id_dict.pickle") | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn) | |
clip_logits = None | |
clip_logits_file = os.path.join(save_dir, "clip_logits_result.pickle") | |
clip_filt_file = os.path.join(save_dir, "clip_filt_result.pickle") | |
caption_filt_file = os.path.join(save_dir, "caption_filt_result.pickle") | |
if args.mode == "clip_feat": | |
compute_new = False | |
clip_logits = {} | |
if os.path.exists(clip_logits_file): | |
with open(clip_logits_file, 'rb') as f: | |
clip_logits = pickle.load(f) | |
if "image_features" not in clip_logits: | |
compute_new = True | |
else: | |
compute_new=True | |
if compute_new: | |
if clip_logits == '': | |
clip_logits = {} | |
print(f"compute clip_feat {file}",flush=True) | |
clip_feature_ret = filter.clip_feature(dataloader) | |
clip_logits["image_features"] = clip_feature_ret["clip_features"] | |
if "ids" in clip_logits: | |
assert clip_feature_ret["ids"] == clip_logits["ids"] | |
else: | |
clip_logits["ids"] = clip_feature_ret["ids"] | |
with open(clip_logits_file, 'wb') as f: | |
pickle.dump(clip_logits, f) | |
print(f"clip_feat_result saved to {clip_logits_file}",flush=True) | |
else: | |
print(f"skip {clip_logits_file}",flush=True) | |
if args.mode == "clip_logit": | |
# if clip_logit: | |
if os.path.exists(clip_logits_file): | |
try: | |
with open(clip_logits_file, 'rb') as f: | |
clip_logits = pickle.load(f) | |
except: | |
continue | |
skip = True | |
if args.check and clip_logits=="": | |
skip = False | |
else: | |
skip = False | |
# skip = False | |
if not skip: | |
# os.makedirs(os.path.join(save_dir, "tmp"), exist_ok=True) | |
with open(clip_logits_file, 'wb') as f: | |
pickle.dump("", f) | |
try: | |
clip_logits = filter.clip_logit(dataloader) | |
except: | |
print(f"Error in clip_logit {file}",flush=True) | |
continue | |
with open(clip_logits_file, 'wb') as f: | |
pickle.dump(clip_logits, f) | |
print(f"clip_logits_result saved to {clip_logits_file}",flush=True) | |
else: | |
print(f"skip {clip_logits_file}",flush=True) | |
if args.mode == "clip_logit_update": | |
if os.path.exists(clip_logits_file): | |
with open(clip_logits_file, 'rb') as f: | |
clip_logits = pickle.load(f) | |
else: | |
print(f"{clip_logits_file} not exist",flush=True) | |
continue | |
if clip_logits == "": | |
print(f"skip {clip_logits_file}",flush=True) | |
continue | |
ret = filter.clip_logit_by_feat(clip_logits["clip_features"]) | |
# assert (clip_logits["clip_logits"] - ret["clip_logits"]).abs().max() < 0.01 | |
clip_logits["clip_logits"] = ret["clip_logits"] | |
clip_logits["text"] = ret["text"] | |
with open(clip_logits_file, 'wb') as f: | |
pickle.dump(clip_logits, f) | |
if args.mode == "clip_filt": | |
# if os.path.exists(clip_filt_file): | |
# with open(clip_filt_file, 'rb') as f: | |
# ret = pickle.load(f) | |
# else: | |
if clip_logits is None: | |
try: | |
with open(clip_logits_file, 'rb') as f: | |
clip_logits = pickle.load(f) | |
except: | |
print(f"Error in loading {clip_logits_file}",flush=True) | |
error_files.append(clip_logits_file) | |
continue | |
if clip_logits == "": | |
print(f"skip {clip_logits_file}",flush=True) | |
error_files.append(clip_logits_file) | |
continue | |
clip_filt_result = filter.clip_filt(clip_logits) | |
with open(clip_filt_file, 'wb') as f: | |
pickle.dump(clip_filt_result, f) | |
print(f"clip_filt_result saved to {clip_filt_file}",flush=True) | |
if args.mode == "caption_filt": | |
if os.path.exists(caption_filt_file): | |
try: | |
with open(caption_filt_file, 'rb') as f: | |
ret = pickle.load(f) | |
except: | |
continue | |
skip = True | |
if args.check and ret=="": | |
skip = False | |
# os.remove(caption_filt_file) | |
print(f"empty {caption_filt_file}",flush=True) | |
# skip = True | |
else: | |
skip = False | |
if not skip: | |
with open(caption_filt_file, 'wb') as f: | |
pickle.dump("", f) | |
# try: | |
ret = filter.caption_filt(dataloader) | |
# except: | |
# print(f"Error in filtering {file}",flush=True) | |
# continue | |
with open(caption_filt_file, 'wb') as f: | |
pickle.dump(ret, f) | |
print(f"caption_filt_result saved to {caption_filt_file}",flush=True) | |
else: | |
print(f"skip {caption_filt_file}",flush=True) | |
if args.mode == "caption_flit_append": | |
if not os.path.exists(caption_filt_file): | |
print(f"{caption_filt_file} not exist",flush=True) | |
continue | |
with open(caption_filt_file, 'rb') as f: | |
old_caption_filt_result = pickle.load(f) | |
skip = True | |
for i in filter.caption_filter.filter_prompts: | |
if i not in old_caption_filt_result["filter_prompts"]: | |
skip = False | |
break | |
if skip: | |
print(f"skip {caption_filt_file}",flush=True) | |
continue | |
old_remain_ids = old_caption_filt_result["remain_ids"] | |
new_dataset = SamDataset(image_folder_path, caption_folder_path, id_file=old_remain_ids, id_dict_file=id_dict_file) | |
new_dataloader = torch.utils.data.DataLoader(new_dataset, batch_size=64, shuffle=False, num_workers=8, collate_fn=collate_fn) | |
ret = filter.caption_filt(new_dataloader) | |
old_caption_filt_result["remain_ids"] = ret["remain_ids"] | |
old_caption_filt_result["filtered_ids"].extend(ret["filtered_ids"]) | |
new_filter_count = ret["filter_count"].copy() | |
for i in range(len(old_caption_filt_result["filter_count"])): | |
new_filter_count[i] += old_caption_filt_result["filter_count"][i] | |
old_caption_filt_result["filter_count"] = new_filter_count | |
old_caption_filt_result["filter_prompts"] = ret["filter_prompts"] | |
with open(caption_filt_file, 'wb') as f: | |
pickle.dump(old_caption_filt_result, f) | |
if args.mode == "gather_result": | |
with open(clip_filt_file, 'rb') as f: | |
clip_filt_result = pickle.load(f) | |
with open(caption_filt_file, 'rb') as f: | |
caption_filt_result = pickle.load(f) | |
caption_filtered_ids = [i[0] for i in caption_filt_result["filtered_ids"]] | |
all_filtered_id_num += len(set(clip_filt_result["filtered_ids"]) | set(caption_filtered_ids) ) | |
remain_feat_num += len(clip_filt_result["remain_ids"]) | |
remain_caption_num += len(caption_filt_result["remain_ids"]) | |
filter_feat_num += len(clip_filt_result["filtered_ids"]) | |
filter_caption_num += len(caption_filtered_ids) | |
remain_ids = set(clip_filt_result["remain_ids"]) & set(caption_filt_result["remain_ids"]) | |
remain_ids = list(remain_ids) | |
remain_ids.sort() | |
# with open(os.path.join(save_dir, "remain_ids.pickle"), 'wb') as f: | |
# pickle.dump(remain_ids, f) | |
# print(f"remain_ids saved to {save_dir}/remain_ids.pickle",flush=True) | |
all_remain_ids.extend(remain_ids) | |
if file.replace("_id_dict.pickle","") in val_set: | |
all_remain_ids_val.extend(remain_ids) | |
else: | |
all_remain_ids_train.extend(remain_ids) | |
if args.mode == "gather_result": | |
print(f"filtered ids: {all_filtered_id_num}",flush=True) | |
print(f"remain feat num: {remain_feat_num}",flush=True) | |
print(f"remain caption num: {remain_caption_num}",flush=True) | |
print(f"filter feat num: {filter_feat_num}",flush=True) | |
print(f"filter caption num: {filter_caption_num}",flush=True) | |
all_remain_ids.sort() | |
with open(os.path.join(filt_dir, "all_remain_ids.pickle"), 'wb') as f: | |
pickle.dump(all_remain_ids, f) | |
with open(os.path.join(filt_dir, "all_remain_ids_train.pickle"), 'wb') as f: | |
pickle.dump(all_remain_ids_train, f) | |
with open(os.path.join(filt_dir, "all_remain_ids_val.pickle"), 'wb') as f: | |
pickle.dump(all_remain_ids_val, f) | |
print(f"all_remain_ids saved to {filt_dir}/all_remain_ids.pickle",flush=True) | |
print(f"all_remain_ids_train saved to {filt_dir}/all_remain_ids_train.pickle",flush=True) | |
print(f"all_remain_ids_val saved to {filt_dir}/all_remain_ids_val.pickle",flush=True) | |
print("finished",flush=True) | |
for file in error_files: | |
# os.remove(file) | |
print(file,flush=True) | |
if __name__ == "__main__": | |
args = parse_args() | |
log_file = "sam_filt" | |
idx=0 | |
hostname = socket.gethostname() | |
now_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) | |
while os.path.exists(f"{log_file}_{hostname}_check{args.check}_{now_time}_{idx}.log"): | |
idx+=1 | |
main(args) | |
# clip_logits_analysis() | |