File size: 9,832 Bytes
e44e44b
247b595
 
 
 
 
 
 
61e0f27
247b595
 
 
 
 
 
 
 
61e0f27
247b595
61e0f27
 
 
 
 
 
 
 
e44e44b
 
 
 
 
 
 
 
 
 
 
 
 
 
247b595
61e0f27
247b595
 
 
61e0f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247b595
61e0f27
247b595
 
 
 
 
 
61e0f27
 
 
 
 
 
 
 
247b595
61e0f27
 
 
 
247b595
 
 
 
 
 
 
 
 
 
61e0f27
 
 
247b595
61e0f27
 
247b595
 
61e0f27
247b595
 
61e0f27
247b595
61e0f27
 
 
 
 
 
 
 
 
247b595
 
61e0f27
247b595
 
 
 
 
 
 
 
61e0f27
 
 
247b595
61e0f27
 
 
247b595
61e0f27
247b595
 
 
 
61e0f27
 
247b595
 
61e0f27
247b595
61e0f27
 
 
 
 
 
 
 
247b595
 
61e0f27
247b595
 
61e0f27
 
247b595
 
61e0f27
e44e44b
247b595
 
 
 
e44e44b
247b595
50c4034
247b595
 
 
3e7216e
 
 
50c4034
247b595
 
 
 
 
 
 
 
61e0f27
247b595
61e0f27
 
247b595
61e0f27
 
 
 
 
247b595
61e0f27
 
 
 
247b595
61e0f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247b595
 
 
 
50c4034
e44e44b
247b595
 
e44e44b
 
 
247b595
 
61e0f27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils

is_colab = utils.is_google_colab()


class Model:
    def __init__(self, name, path, prefix):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None


models = [
    Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
    Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
    Model("Beksinski", "s3nh/beksinski-style-stable-diffusion", "beksinski style "),
    Model("Poolsuite", "prompthero/poolsuite", "poolsuite style "),
    Model("Robo Diffusion", "nousr/robo-diffusion", ""),
    Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style "),
    Model("JWST", "dallinmackay/JWST-Deep-Space-diffusion", "JWST ")
]

scheduler = DPMSolverMultistepScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    num_train_timesteps=1000,
    trained_betas=None,
    predict_epsilon=True,
    thresholding=False,
    algorithm_type="dpmsolver++",
    solver_type="midpoint",
    lower_order_final=True,
)

last_mode = "txt2img"
current_model = models[0]
current_model_path = current_model.path

if is_colab:
    pipe = StableDiffusionPipeline.from_pretrained(
        current_model.path, torch_dtype=torch.float16, scheduler=scheduler)

else:  # download all models
    vae = AutoencoderKL.from_pretrained(
        current_model.path, subfolder="vae", torch_dtype=torch.float16)
    for model in models:
        try:
            unet = UNet2DConditionModel.from_pretrained(
                model.path, subfolder="unet", torch_dtype=torch.float16)
            model.pipe_t2i = StableDiffusionPipeline.from_pretrained(
                model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
            model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
                model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
        except:
            models.remove(model)
    pipe = models[0].pipe_t2i

if torch.cuda.is_available():
    pipe = pipe.to("cuda")

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"


def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

    global current_model
    for model in models:
        if model.name == model_name:
            current_model = model
            model_path = current_model.path

    generator = torch.Generator('cuda').manual_seed(
        seed) if seed != 0 else None

    if img is not None:
        return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
    else:
        return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)


def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        if is_colab:
            pipe = StableDiffusionPipeline.from_pretrained(
                current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
        else:
            pipe.to("cpu")
            pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
            pipe = pipe.to("cuda")
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt
    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        # num_images_per_prompt=n_images,
        num_inference_steps=int(steps),
        guidance_scale=guidance,
        width=width,
        height=height,
        generator=generator)

    return replace_nsfw_images(result)


def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        if is_colab:
            pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
                current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
        else:
            pipe.to("cpu")
            pipe = current_model.pipe_i2i

        if torch.cuda.is_available():
            pipe = pipe.to("cuda")
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize(
        (int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt=neg_prompt,
        # num_images_per_prompt=n_images,
        init_image=img,
        num_inference_steps=int(steps),
        strength=strength,
        guidance_scale=guidance,
        width=width,
        height=height,
        generator=generator)

    return replace_nsfw_images(result)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images[0]


css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="playground-diffusion-div">
              <div>
                <h1>Playground Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/riccardogiorato/avatar-diffusion">Avatar</a>,<br/>
               <a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/>
               <a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/>
               Diffusers 🧨 SD model hosted on HuggingFace 🤗.
              </p>
               Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
            </div>
        """
    )
    with gr.Row():

        with gr.Column(scale=55):
            with gr.Group():
                model_name = gr.Dropdown(label="Model", choices=[
                                         m.name for m in models], value=current_model.name)

                with gr.Row():
                    prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,
                                        placeholder="Enter prompt. Style applied automatically").style(container=False)
                    generate = gr.Button(value="Generate").style(
                        rounded=(False, True, True, False))

                image_out = gr.Image(height=512)
                # gallery = gr.Gallery(
                #     label="Generated images", show_label=False, elem_id="gallery"
                # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
            with gr.Tab("Options"):
                with gr.Group():
                    neg_prompt = gr.Textbox(
                        label="Negative prompt", placeholder="What to exclude from the image")

                    # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

                    with gr.Row():
                        guidance = gr.Slider(
                            label="Guidance scale", value=7.5, maximum=15)
                        steps = gr.Slider(
                            label="Steps", value=25, minimum=2, maximum=75, step=1)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width", value=512, minimum=64, maximum=1024, step=8)
                        height = gr.Slider(
                            label="Height", value=512, minimum=64, maximum=1024, step=8)

                    seed = gr.Slider(
                        0, 2147483647, label='Seed (0 = random)', value=0, step=1)

            with gr.Tab("Image to image"):
                with gr.Group():
                    image = gr.Image(label="Image", height=256,
                                     tool="editor", type="pil")
                    strength = gr.Slider(
                        label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    inputs = [model_name, prompt, guidance, steps,
              width, height, seed, image, strength, neg_prompt]
    prompt.submit(inference, inputs=inputs, outputs=image_out)
    generate.click(inference, inputs=inputs, outputs=image_out)

    ex = gr.Examples([
        [models[0].name, "Neon techno-magic robot with spear pierces an ancient beast, hyperrealism, no blur, 4k resolution, ultra detailed", 7.5, 50],
        [models[0].name, "halfturn portrait of a big crystal face of a beautiful abstract ancient Egyptian elderly shaman woman, made of iridescent golden crystals, half - turn, bottom view, ominous, intricate, studio, art by anthony macbain and greg rutkowski and alphonse mucha, concept art, 4k, sharp focus", 7.5, 25],
    ], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)

    gr.HTML("""
      <p>Models by <a href="https://huggingface.co/riccardogiorato">@riccardogiorato</a><br></p>
    """)

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)