File size: 1,386 Bytes
9865ad8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
from datasets import load_dataset

# Step 1: Load pre-trained model and tokenizer
model_name = "google/mt5-base"  # Example: T5 model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

# Step 2: Load dataset
dataset = load_dataset("csv", data_files="accounting_data.jsonl")

# Step 3: Preprocess the dataset
def preprocess_function(examples):
    inputs = [f"Generate report: {ledger}" for ledger in examples["prompt"]]
    targets = examples["completion"]
    model_inputs = tokenizer(inputs, max_length=512, truncation=True)
    labels = tokenizer(targets, max_length=128, truncation=True)
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

tokenized_datasets = dataset.map(preprocess_function, batched=True)

# Step 4: Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=8,
    num_train_epochs=3,
    save_total_limit=3,
    predict_with_generate=True,
)

# Step 5: Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
)

# Step 6: Train the model
trainer.train()