Spaces:
Sleeping
Sleeping
File size: 2,116 Bytes
a110b8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import streamlit as st
from dotenv import load_dotenv
from langchain.callbacks.base import BaseCallbackHandler
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
from langchain.vectorstores import Chroma
load_dotenv()
website_url = os.environ.get('WEBSITE_URL', 'a website')
st.set_page_config(page_title=f'Chat with {website_url}')
st.title('Chat with a website')
@st.cache_resource(ttl='1h')
def get_retriever():
embeddings = OpenAIEmbeddings()
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever(search_type='mmr')
return retriever
class StreamHandler(BaseCallbackHandler):
def __init__(self, container: st.delta_generator.DeltaGenerator, initial_text: str = ''):
self.container = container
self.text = initial_text
def on_llm_new_token(self, token: str, **kwargs) -> None:
self.text += token
self.container.markdown(self.text)
retriever = get_retriever()
msgs = StreamlitChatMessageHistory()
memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
qa_chain = ConversationalRetrievalChain.from_llm(
llm, retriever=retriever, memory=memory, verbose=False
)
if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
msgs.clear()
msgs.add_ai_message(f'Ask me anything about {website_url}!')
avatars = {'human': 'user', 'ai': 'assistant'}
for msg in msgs.messages:
st.chat_message(avatars[msg.type]).write(msg.content)
if user_query := st.chat_input(placeholder='Ask me anything!'):
st.chat_message('user').write(user_query)
with st.chat_message('assistant'):
stream_handler = StreamHandler(st.empty())
response = qa_chain.run(user_query, callbacks=[stream_handler])
|