File size: 964 Bytes
1ecbd6e 161393d 59d8ead 161393d 0d5a69e 161393d 867943a 161393d 867943a 161393d 867943a 161393d f9b726c 161393d f9b726c 161393d f9b726c cd06e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import requests
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v2/whisper"
API_KEY = "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"
HEADERS = {"Authorization": f"Bearer {API_KEY}"}
def transcribe_audio(audio_path: str) -> str:
# Read audio file
with open(audio_path, "rb") as f:
audio_data = f.read()
# Make API request to OpenAI Whisper v2 API
response = requests.post(API_URL, headers=HEADERS, data=audio_data)
result = response.json()
transcribed_text = result["text"]
return transcribed_text
audio_input = gr.inputs.Audio(type="filepath")
text_output = gr.outputs.Textbox()
iface = gr.Interface(
fn=transcribe_audio,
inputs=audio_input,
outputs=text_output,
title="Speech-to-Text using Whisper v2",
description="Upload an audio file to transcribe it to text.",
theme="Monochrome",
live=True,
capture_session=True,
)
iface.launch() |