Spaces:
Sleeping
Sleeping
File size: 4,711 Bytes
555d77a d4c83d2 555d77a 9d504d6 a2c958a 9d504d6 555d77a d4c83d2 555d77a 9d504d6 a2c958a 9d504d6 ba65c08 555d77a 1535def 9d504d6 1535def 555d77a 35649b2 555d77a 9d504d6 33552fd 9d504d6 33552fd 9d504d6 33552fd 9d504d6 555d77a 9d504d6 d4c83d2 a2c958a 555d77a d4c83d2 555d77a 1535def 555d77a 1535def 9d504d6 555d77a 1535def 555d77a 9d504d6 555d77a 1535def 555d77a 9a9df29 1535def 555d77a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
from openai import OpenAI
import os
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
metadata_path = 'question_metadata.csv' # Update this path if needed
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
metadata = pd.read_csv(metadata_path)
embeddings = np.load(embeddings_path)
# Load the SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# Load the system prompt from the file
with open("prompt.txt", "r") as file:
system_prompt = file.read()
st.title("Real-World Programming Question Mock Interview")
# Initialize chat history in session state
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": system_prompt}]
# Function to find the top 1 most similar question based on user input
def find_top_question(query):
# Generate embedding for the query
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
# Reshape query_embedding to ensure it is a 2D array
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
# Compute cosine similarity between query embedding and dataset embeddings
similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
# Get the index of the most similar result (top 1)
top_index = similarities.argsort()[-1] # Index of highest similarity
# Retrieve metadata for the top result
top_result = metadata.iloc[top_index].copy()
top_result['similarity_score'] = similarities[top_index]
return top_result
# Function to generate response using OpenAI API with debugging logs
def generate_response(prompt):
st.write("### Debugging Log: Data Sent to GPT")
st.write(prompt) # Log the prompt being sent to GPT for debugging
response = client.chat.completions.create(
model="o1-mini",
messages=st.session_state.messages + [{"role": "assistant", "content": prompt}]
)
return response.choices[0].message.content
# User input form for generating a new question
with st.form(key="input_form"):
company = st.text_input("Company", value="Google") # Default value: Google
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") # Default: Backtracking
generate_button = st.form_submit_button(label="Generate")
if generate_button:
# Clear session state and start a new conversation history with system prompt
st.session_state.messages = [{"role": "assistant", "content": system_prompt}]
# Create a query from user inputs and find the most relevant question
query = f"{company} {difficulty} {topic}"
top_question = find_top_question(query)
# Prepare a detailed prompt for GPT using the top question's details
detailed_prompt = (
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
f"**Company**: {top_question['company']}\n"
f"**Question Name**: {top_question['questionName']}\n"
f"**Difficulty Level**: {top_question['difficulty level']}\n"
f"**Tags**: {top_question['Tags']}\n"
f"**Content**: {top_question['Content']}\n"
f"\nPlease create a real-world interview question based on this information."
)
# Generate response using GPT-4 with detailed prompt and debugging logs
response = generate_response(detailed_prompt)
# Display assistant response in chat message container and add to session history
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# Display chat messages from history on app rerun (for subsequent conversation)
for message in st.session_state.messages[1:]: # Skip the system message
with st.chat_message(message["role"]):
st.markdown(message["content"])
st.sidebar.markdown("""
## About
This is a Real-World Interview Question Generator powered by OpenAI's API.
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
""") |