codingprepdemo / app.py
rishabhpr's picture
Update app.py
da578f7 verified
raw
history blame
7.72 kB
import streamlit as st
from openai import OpenAI
import os
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
metadata_path = 'question_metadata.csv' # Update this path if needed
embeddings_path = 'question_dataset_embeddings.npy' # Update this path if needed
metadata = pd.read_csv(metadata_path)
embeddings = np.load(embeddings_path)
# Load the SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# Load prompts from files
with open("question_generation_prompt.txt", "r") as file:
question_generation_prompt = file.read()
with open("technical_interviewer_prompt.txt", "r") as file:
technical_interviewer_prompt = file.read()
st.title("Real-World Programming Question Mock Interview")
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state.messages = []
if "follow_up_mode" not in st.session_state:
st.session_state.follow_up_mode = False # Tracks whether we're in follow-up mode
if "generated_question" not in st.session_state:
st.session_state.generated_question = None # Stores the generated question for persistence
if "debug_logs" not in st.session_state:
st.session_state.debug_logs = [] # Stores debug logs for toggling
# Function to find the top 1 most similar question based on user input
def find_top_question(query):
# Generate embedding for the query
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
# Reshape query_embedding to ensure it is a 2D array
query_embedding = query_embedding.reshape(1, -1) # Reshape to (1, n_features)
# Compute cosine similarity between query embedding and dataset embeddings
similarities = cosine_similarity(query_embedding, embeddings).flatten() # Flatten to get a 1D array of similarities
# Get the index of the most similar result (top 1)
top_index = similarities.argsort()[-1] # Index of highest similarity
# Retrieve metadata for the top result
top_result = metadata.iloc[top_index].copy()
top_result['similarity_score'] = similarities[top_index]
return top_result
# Function to generate response using OpenAI API with debugging logs
def generate_response(messages):
debug_log_entry = {"messages": messages}
st.session_state.debug_logs.append(debug_log_entry) # Store debug log
response = client.chat.completions.create(
model="o1-mini",
messages=messages,
)
return response.choices[0].message.content
# User input form for generating a new question
with st.form(key="input_form"):
company = st.text_input("Company", value="Google") # Default value: Google
difficulty = st.selectbox("Difficulty", ["Easy", "Medium", "Hard"], index=1) # Default: Medium
topic = st.text_input("Topic (e.g., Backtracking)", value="Backtracking") # Default: Backtracking
generate_button = st.form_submit_button(label="Generate")
if generate_button:
# Clear session state and start fresh with follow-up mode disabled
st.session_state.messages = []
st.session_state.follow_up_mode = False
# Create a query from user inputs and find the most relevant question
query = f"{company} {difficulty} {topic}"
top_question = find_top_question(query)
# Prepare a detailed prompt for GPT using the top question's details
detailed_prompt = (
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
f"**Company**: {top_question['company']}\n"
f"**Question Name**: {top_question['questionName']}\n"
f"**Difficulty Level**: {top_question['difficulty level']}\n"
f"**Tags**: {top_question['Tags']}\n"
f"**Content**: {top_question['Content']}\n"
f"\nPlease create a real-world interview question based on this information."
)
# Generate response using GPT-4 with detailed prompt and debugging logs
response = generate_response([{"role": "assistant", "content": question_generation_prompt}, {"role": "user", "content": detailed_prompt}])
# Store generated question in session state for persistence in sidebar and follow-up conversation state
st.session_state.generated_question = response
# Add the generated question to the conversation history as an assistant message (to make it part of follow-up conversations)
st.session_state.messages.append({"role": "assistant", "content": response})
# Enable follow-up mode after generating the initial question
st.session_state.follow_up_mode = True
# Display chat messages from history on app rerun (for subsequent conversation)
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chatbox for subsequent conversations with assistant (follow-up mode)
if st.session_state.follow_up_mode:
if user_input := st.chat_input("Continue your conversation or ask follow-up questions here:"):
# Display user message in chat message container and add to session history
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
# Generate assistant's response based on follow-up input using technical_interviewer_prompt as system prompt,
# including the generated question in context.
assistant_response = generate_response(
[{"role": "assistant", "content": technical_interviewer_prompt}] + st.session_state.messages
)
with st.chat_message("assistant"):
st.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
# Sidebar content to display persistent generated question (left sidebar)
st.sidebar.markdown("## Generated Question")
if st.session_state.generated_question:
st.sidebar.markdown(st.session_state.generated_question)
else:
st.sidebar.markdown("_No question generated yet._")
st.sidebar.markdown("""
## About
This is a Real-World Interview Question Generator powered by OpenAI's API.
Enter a company name, topic, and level of difficulty, and it will transform a relevant question into a real-world interview scenario!
Continue chatting with the assistant in the chatbox below.
""")
# Right sidebar toggleable debug logs and code interpreter section
with st.expander("Debug Logs (Toggle On/Off)", expanded=False):
if len(st.session_state.debug_logs) > 0:
for log_entry in reversed(st.session_state.debug_logs): # Show most recent logs first
st.write(log_entry)
st.sidebar.markdown("---")
st.sidebar.markdown("## Python Code Interpreter")
code_input = st.sidebar.text_area("Write your Python code here:")
if st.sidebar.button("Run Code"):
try:
exec_globals = {}
exec(code_input, exec_globals) # Execute user-provided code safely within its own scope.
output_key = [k for k in exec_globals.keys() if k != "__builtins__"]
if output_key:
output_value = exec_globals[output_key[0]]
st.sidebar.success(f"Output: {output_value}")
else:
st.sidebar.success("Code executed successfully!")
except Exception as e:
st.sidebar.error(f"Error: {e}")