Spaces:
Sleeping
Sleeping
import streamlit as st | |
from openai import OpenAI | |
import os | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise_distances_reduction import cosine_similarity_reduction | |
import torch | |
# Set up OpenAI client | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
# Check if GPU is available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Load metadata and embeddings (ensure these files are in your working directory or update paths) | |
metadata_path = '/kaggle/working/leetcode_metadata.csv' # Update this path if needed | |
embeddings_path = '/kaggle/working/leetcode_embeddings2.npy' # Update this path if needed | |
metadata = pd.read_csv(metadata_path) | |
embeddings = np.load(embeddings_path) | |
# Load the SentenceTransformer model | |
model = SentenceTransformer("all-MiniLM-L6-v2").to(device) | |
# Load the system prompt from the file | |
with open("prompt.txt", "r") as file: | |
system_prompt = file.read() | |
st.title("LeetCode to Real-World Interview Question Generator") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": system_prompt}] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages[1:]: # Skip the system message | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Function to find the top 1 most similar question based on user input | |
def find_top_question(query): | |
# Generate embedding for the query | |
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy() | |
# Compute cosine similarity between query embedding and dataset embeddings using scikit-learn's pairwise_distances_reduction | |
similarities = cosine_similarity_reduction( | |
X=query_embedding.reshape(1, -1), Y=embeddings, reduce_func="argmax" | |
) | |
# Get the index of the most similar result (top 1) | |
top_index = similarities.indices[0] # Index of highest similarity | |
# Retrieve metadata for the top result | |
top_result = metadata.iloc[top_index].copy() | |
top_result['similarity_score'] = similarities.distances[0] | |
return top_result | |
# Function to generate response using OpenAI API with debugging logs | |
def generate_response(prompt): | |
st.write("### Debugging Log: Data Sent to GPT") | |
st.write(prompt) # Log the prompt being sent to GPT for debugging | |
response = client.chat.completions.create( | |
model="gpt-4o", | |
messages=st.session_state.messages + [{"role": "system", "content": prompt}] | |
) | |
return response.choices[0].message.content | |
# React to user input | |
if prompt := st.chat_input("Enter a LeetCode-related query (e.g., 'google backtracking'):"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Find the top question based on user input | |
top_question = find_top_question(prompt) | |
# Prepare a detailed prompt for GPT using the top question's details | |
detailed_prompt = ( | |
f"Transform this LeetCode question into a real-world interview scenario:\n\n" | |
f"**Company**: {top_question['company']}\n" | |
f"**Question ID**: {top_question['questionId']}\n" | |
f"**Question Name**: {top_question['questionName']}\n" | |
f"**Difficulty Level**: {top_question['difficulty level']}\n" | |
f"**Tags**: {top_question['Tags']}\n" | |
f"**Content**: {top_question['Content']}\n" | |
f"\nPlease create a real-world interview question based on this information." | |
) | |
# Generate response using GPT-4 with detailed prompt and debugging logs | |
response = generate_response(detailed_prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
st.sidebar.markdown(""" | |
## About | |
This is a LeetCode to Real-World Interview Question Generator powered by OpenAI's GPT-4. | |
Enter a LeetCode-related query, and it will transform a relevant question into a real-world interview scenario! | |
""") |