codingprepdemo / app.py
rishabhpr's picture
Update app.py
9d504d6 verified
raw
history blame
4.36 kB
import streamlit as st
from openai import OpenAI
import os
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise_distances_reduction import cosine_similarity_reduction
import torch
# Set up OpenAI client
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load metadata and embeddings (ensure these files are in your working directory or update paths)
metadata_path = '/kaggle/working/leetcode_metadata.csv' # Update this path if needed
embeddings_path = '/kaggle/working/leetcode_embeddings2.npy' # Update this path if needed
metadata = pd.read_csv(metadata_path)
embeddings = np.load(embeddings_path)
# Load the SentenceTransformer model
model = SentenceTransformer("all-MiniLM-L6-v2").to(device)
# Load the system prompt from the file
with open("prompt.txt", "r") as file:
system_prompt = file.read()
st.title("LeetCode to Real-World Interview Question Generator")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": system_prompt}]
# Display chat messages from history on app rerun
for message in st.session_state.messages[1:]: # Skip the system message
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Function to find the top 1 most similar question based on user input
def find_top_question(query):
# Generate embedding for the query
query_embedding = model.encode(query, convert_to_tensor=True, device=device).cpu().numpy()
# Compute cosine similarity between query embedding and dataset embeddings using scikit-learn's pairwise_distances_reduction
similarities = cosine_similarity_reduction(
X=query_embedding.reshape(1, -1), Y=embeddings, reduce_func="argmax"
)
# Get the index of the most similar result (top 1)
top_index = similarities.indices[0] # Index of highest similarity
# Retrieve metadata for the top result
top_result = metadata.iloc[top_index].copy()
top_result['similarity_score'] = similarities.distances[0]
return top_result
# Function to generate response using OpenAI API with debugging logs
def generate_response(prompt):
st.write("### Debugging Log: Data Sent to GPT")
st.write(prompt) # Log the prompt being sent to GPT for debugging
response = client.chat.completions.create(
model="gpt-4o",
messages=st.session_state.messages + [{"role": "system", "content": prompt}]
)
return response.choices[0].message.content
# React to user input
if prompt := st.chat_input("Enter a LeetCode-related query (e.g., 'google backtracking'):"):
# Display user message in chat message container
st.chat_message("user").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Find the top question based on user input
top_question = find_top_question(prompt)
# Prepare a detailed prompt for GPT using the top question's details
detailed_prompt = (
f"Transform this LeetCode question into a real-world interview scenario:\n\n"
f"**Company**: {top_question['company']}\n"
f"**Question ID**: {top_question['questionId']}\n"
f"**Question Name**: {top_question['questionName']}\n"
f"**Difficulty Level**: {top_question['difficulty level']}\n"
f"**Tags**: {top_question['Tags']}\n"
f"**Content**: {top_question['Content']}\n"
f"\nPlease create a real-world interview question based on this information."
)
# Generate response using GPT-4 with detailed prompt and debugging logs
response = generate_response(detailed_prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
st.sidebar.markdown("""
## About
This is a LeetCode to Real-World Interview Question Generator powered by OpenAI's GPT-4.
Enter a LeetCode-related query, and it will transform a relevant question into a real-world interview scenario!
""")