File size: 6,981 Bytes
8bf58fb
044b65e
 
 
762e024
044b65e
 
 
1e07071
762e024
1e07071
762e024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
 
762e024
 
 
 
 
 
 
 
 
044b65e
 
 
762e024
044b65e
762e024
 
 
044b65e
762e024
044b65e
762e024
044b65e
762e024
044b65e
1e07071
044b65e
 
1e07071
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e07071
 
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf58fb
044b65e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr

import langchain, langchain_huggingface

from langchain.llms import GooglePalm
from langchain.document_loaders.csv_loader import CSVLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS

api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

llm = GooglePalm(google_api_key = api_key, temperature=0.7)


loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
data = loader.load()


instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

retriever = vectordb.as_retriever()

from langchain.prompts import PromptTemplate

prompt_template = """Given the following context and a question, generate an answer based on the context only.

In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

CONTEXT: {context}

QUESTION: {question}"""

PROMPT = PromptTemplate(
    template = prompt_template, input_variables = ["context", "question"]
)

from langchain.chains import RetrievalQA

chain = RetrievalQA.from_chain_type(llm = llm,
            chain_type="stuff",
            retriever=retriever,
            input_key="query",
            return_source_documents=True,
            chain_type_kwargs = {"prompt": PROMPT})

def chatresponse(message, history):
    output = chain(message)
    return output['result']

gr.ChatInterface(chatresponse).launch()


# import gradio as gr
# from langchain.llms import GooglePalm

# api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"

# llm = GooglePalm(google_api_key = api_key, temperature=0.7)

# from langchain.document_loaders.csv_loader import CSVLoader

# loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
# data = loader.load()

# from langchain_huggingface import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS

# # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
# instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
# # instructor_embeddings = HuggingFaceEmbeddings()

# vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)

# # e = embeddings_model.embed_query("What is your refund policy")

# retriever = vectordb.as_retriever()

# from langchain.prompts import PromptTemplate

# prompt_template = """Given the following context and a question, generate an answer based on the context only.

# In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
# If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
# If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.

# CONTEXT: {context}

# QUESTION: {question}"""

# PROMPT = PromptTemplate(
#     template = prompt_template, input_variables = ["context", "question"]
# )

# from langchain.chains import RetrievalQA

# chain = RetrievalQA.from_chain_type(llm = llm,
#             chain_type="stuff",
#             retriever=retriever,
#             input_key="query",
#             return_source_documents=True,
#             chain_type_kwargs = {"prompt": PROMPT})

# # Load your LLM model and necessary components
# # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
# # For this example, we'll assume the model and chain function are already available

# def chatbot(query):
#     response = chain(query)
#     # Extract the 'result' part of the response
#     result = response.get('result', 'Sorry, I could not find an answer.')
#     return result

# # Define the Gradio interface
# iface = gr.Interface(
#     fn=chatbot,  # Function to call
#     inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."),  # Input type
#     outputs="text",  # Output type
#     title="Hugging Face LLM Chatbot",
#     description="Ask any question related to the documents and get an answer from the LLM model.",
# )

# # Launch the interface
# iface.launch()

# # Save this file as app.py and push it to your Hugging Face Space repository

# # import gradio as gr

# # def greet(name, intensity):
# #     return "Hello, " + name + "!" * int(intensity)

# # demo = gr.Interface(
# #     fn=greet,
# #     inputs=["text", "slider"],
# #     outputs=["text"],
# # )

# # demo.launch()


# # import gradio as gr
# # from huggingface_hub import InferenceClient

# # """
# # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# # """
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# # def respond(
# #     message,
# #     history: list[tuple[str, str]],
# #     system_message,
# #     max_tokens,
# #     temperature,
# #     top_p,
# # ):
# #     messages = [{"role": "system", "content": system_message}]

# #     for val in history:
# #         if val[0]:
# #             messages.append({"role": "user", "content": val[0]})
# #         if val[1]:
# #             messages.append({"role": "assistant", "content": val[1]})

# #     messages.append({"role": "user", "content": message})

# #     response = ""

# #     for message in client.chat_completion(
# #         messages,
# #         max_tokens=max_tokens,
# #         stream=True,
# #         temperature=temperature,
# #         top_p=top_p,
# #     ):
# #         token = message.choices[0].delta.content

# #         response += token
# #         yield response

# # """
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# # """
# # demo = gr.ChatInterface(
# #     respond,
# #     additional_inputs=[
# #         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# #         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# #         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# #         gr.Slider(
# #             minimum=0.1,
# #             maximum=1.0,
# #             value=0.95,
# #             step=0.05,
# #             label="Top-p (nucleus sampling)",
# #         ),
# #     ],
# # )


# # if __name__ == "__main__":
# #     demo.launch()