Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# Load model and tokenizer | |
model_name = "t5-small" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
# Function to summarize text | |
def summarize_text(text, max_length=100): | |
input_text = "summarize: " + text | |
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = model.generate(inputs, max_length=max_length, min_length=30, length_penalty=2.0, num_beams=4) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
# Gradio UI | |
iface = gr.Interface( | |
fn=summarize_text, | |
inputs=[gr.Textbox(label="Enter Text to Summarize"), gr.Slider(50, 200, step=10, label="Max Length")], | |
outputs="text", | |
title="Text Summarization App", | |
description="This app summarizes long texts using the T5 Transformer model.", | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |