Spaces:
Runtime error
Runtime error
File size: 5,823 Bytes
375a093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from datasets import load_dataset
import pandas as pd
import numpy as np
import os
import json
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
from transformers import Trainer, TrainingArguments, AdamW
model_name = "distilbert-base-uncased"
class USPTODataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
def LoadDataset():
print("=== LOADING THE DATASET ===")
# Extracting the dataset, filtering only for Jan. 2016
dataset_dict = load_dataset('HUPD/hupd',
name='sample',
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
icpr_label=None,
train_filing_start_date='2016-01-01',
train_filing_end_date='2016-01-21',
val_filing_start_date='2016-01-22',
val_filing_end_date='2016-01-31',
)
print("Separating between training and validation data")
df_train = pd.DataFrame(dataset_dict['train'] )
df_val = pd.DataFrame(dataset_dict['validation'] )
print("=== PRE-PROCESSING THE DATASET ===")
#We are interested in the following columns:
# - Abstract
# - Claims
# - Decision <- our `y`
# Let's preprocess them both out of our training and validation data
# Also, consider that the "Decision" column has three types of values: "Accepted", "Rejected", and "Pending". To remove unecessary baggage, we will be only looking for "Accepted" and "Rejected".
necessary_columns = ["abstract","claims","decision"]
output_values = ['ACCEPTED','REJECTED']
print("Dropping unused columns")
trainFeaturesToDrop = [col for col in list(df_train.columns) if col not in necessary_columns]
trainDF = df_train.dropna()
trainDF.drop(columns=trainFeaturesToDrop, inplace=True)
trainDF = trainDF[trainDF['decision'].isin(output_values)]
valFeaturesToDrop = [col for col in list(df_val.columns) if col not in necessary_columns]
valDF = df_val.dropna()
valDF.drop(columns=valFeaturesToDrop, inplace=True)
valDF = valDF[valDF['decision'].isin(output_values)]
# We need to replace the values in the `decision` column to numerical representations. ]
# We will set "ACCEPTED" as `1` and "REJECTED" as `0`.
print("Replacing values in `decision` column")
yKey = {"ACCEPTED":1,"REJECTED":0}
trainDF2 = trainDF.replace({"decision": yKey})
valDF2 = valDF.replace({"decision": yKey})
# We combine the `abstract` and `claims` columns into a single `text` column.
# We also re-label the `decision` column to `label`.
print("Combining columns and renaming `decision` to `label`")
trainDF3 = trainDF2.rename(columns={'decision': 'label'})
trainDF3['text'] = trainDF3['abstract'] + ' ' + trainDF3['claims']
trainDF3.drop(columns=["abstract","claims"],inplace=True)
valDF3 = valDF2.rename(columns={'decision': 'label'})
valDF3['text'] = valDF3['abstract'] + ' ' + valDF3['claims']
valDF3.drop(columns=["abstract","claims"],inplace=True)
# We can grab the data for each column so that we have a list of values for training labels,
# training texts, validation labels, and validation texts.
print("Extracting label and text data from dataframes")
trainData = {
"labels":trainDF3["label"].tolist(),
"text":trainDF3["text"].tolist()
}
valData = {
"labels":valDF3["label"].tolist(),
"text":valDF3["text"].tolist()
}
print(f'TRAINING:\t# labels: {len(trainData["labels"])}\t# texts: {len(trainData["text"])}')
print(f'VALID:\t# labels: {len(valData["labels"])}\t# texts: {len(valData["text"])}')
if not os.path.exists("./data"):
os.makedirs('./data')
with open("./data/train.json", "w") as outfile:
json.dump(trainData, outfile, indent=2)
with open("./data/val.json", "w") as outfile:
json.dump(valData, outfile, indent=2)
return trainData, valData
def main():
trainDataPath = "./data/train.json"
valDataPath = "./data/val.json"
trainData = None
valData = None
if os.path.exists(trainDataPath) and os.path.exists(valDataPath):
ftrain = open(trainDataPath)
trainData = json.load(ftrain)
ftrain.close()
fval = open(valDataPath)
valData = json.load(fval)
fval.close()
else:
trainData, valData = LoadDataset()
print(len(trainData["labels"]), len(trainData["text"]), len(valData["labels"]), len(valData["text"]))
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
train_encodings = tokenizer(trainData["text"], truncation=True, padding=True)
val_encodings = tokenizer(valData["text"], truncation=True, padding=True)
train_dataset = USPTODataset(train_encodings, trainData["labels"])
val_dataset = USPTODataset(val_encodings, valData["labels"])
train_args = TrainingArguments(
output_dir="./results",
num_train_epochs=2,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
learning_rate=5e-5,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10
)
model = DistilBertForSequenceClassification.from_pretrained(model_name)
trainer = Trainer(
model=model,
args=train_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
trainer.train()
if __name__ == "__main__":
main() |