Ryan Kim commited on
Commit
a650e58
1 Parent(s): 835f5ec

pushing temp fix

Browse files
Files changed (3) hide show
  1. .gitignore +3 -1
  2. src/main.py +2 -2
  3. src/test.py +0 -277
.gitignore CHANGED
@@ -1 +1,3 @@
1
- **/.DS_Store
 
 
 
1
+ **/.DS_Store
2
+
3
+ models/*
src/main.py CHANGED
@@ -91,7 +91,7 @@ if "patent_data" not in st.session_state:
91
  st.session_state.patent_num = list(patent_data.keys())[0]
92
  st.session_state.weight = 0.5
93
  st.session_state.patent_abstract_model = ModelImplementation(
94
- './models/uspto_abstracts',
95
  DistilBertForSequenceClassification,
96
  'distilbert-base-uncased',
97
  DistilBertTokenizerFast,
@@ -101,7 +101,7 @@ if "patent_data" not in st.session_state:
101
  )
102
  print("Patent abstracts model initialized")
103
  st.session_state.patent_claim_model = ModelImplementation(
104
- './models/uspto_claims',
105
  DistilBertForSequenceClassification,
106
  'distilbert-base-uncased',
107
  DistilBertTokenizerFast,
 
91
  st.session_state.patent_num = list(patent_data.keys())[0]
92
  st.session_state.weight = 0.5
93
  st.session_state.patent_abstract_model = ModelImplementation(
94
+ 'rk2546/uspto-patents-abstracts',
95
  DistilBertForSequenceClassification,
96
  'distilbert-base-uncased',
97
  DistilBertTokenizerFast,
 
101
  )
102
  print("Patent abstracts model initialized")
103
  st.session_state.patent_claim_model = ModelImplementation(
104
+ 'rk2546/uspto-patents-claims',
105
  DistilBertForSequenceClassification,
106
  'distilbert-base-uncased',
107
  DistilBertTokenizerFast,
src/test.py DELETED
@@ -1,277 +0,0 @@
1
- import os
2
- import json
3
- import random
4
-
5
- import streamlit as st
6
- from transformers import TextClassificationPipeline, pipeline
7
- from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertTokenizerFast, DistilBertForSequenceClassification
8
-
9
- # We'll be using Torch this time around
10
- import torch
11
- import torch.nn.functional as F
12
-
13
- emotion_model_names = (
14
- "cardiffnlp/twitter-roberta-base-sentiment",
15
- "finiteautomata/beto-sentiment-analysis",
16
- "bhadresh-savani/distilbert-base-uncased-emotion",
17
- "siebert/sentiment-roberta-large-english"
18
- )
19
-
20
- class ModelImplementation(object):
21
- def __init__(
22
- self,
23
- transformer_model_name,
24
- model_transformer,
25
- tokenizer_model_name,
26
- tokenizer_func,
27
- pipeline_func,
28
- parser_func,
29
- classifier_args={},
30
- placeholders=[""]
31
- ):
32
- self.transformer_model_name = transformer_model_name
33
- self.tokenizer_model_name = tokenizer_model_name
34
- self.placeholders = placeholders
35
-
36
- self.model = model_transformer.from_pretrained(self.transformer_model_name)
37
- self.tokenizer = tokenizer_func.from_pretrained(self.tokenizer_model_name)
38
- self.classifier = pipeline_func(model=self.model, tokenizer=self.tokenizer, padding=True, truncation=True, **classifier_args)
39
- self.parser = parser_func
40
-
41
- self.history = []
42
-
43
- def predict(self, val):
44
- result = self.classifier(val)
45
- return self.parser(self, result)
46
-
47
- def ParseEmotionOutput(self, result):
48
- label = result[0]['label']
49
- score = result[0]['score']
50
- if self.transformer_model_name == "cardiffnlp/twitter-roberta-base-sentiment":
51
- if label == "LABEL_0":
52
- label = "Negative"
53
- elif label == "LABEL_2":
54
- label = "Positive"
55
- else:
56
- label = "Neutral"
57
- return label, score
58
-
59
- def ParsePatentOutput(self, result):
60
- return result
61
-
62
- def emotion_model_change():
63
- st.session_state.emotion_model = ModelImplementation(
64
- st.session_state.emotion_model_name,
65
- AutoModelForSequenceClassification,
66
- st.session_state.emotion_model_name,
67
- AutoTokenizer,
68
- pipeline,
69
- ParseEmotionOutput,
70
- classifier_args={ "task" : "sentiment-analysis" },
71
- placeholders=["@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."]
72
- )
73
-
74
- if "page" not in st.session_state:
75
- st.session_state.page = "home"
76
-
77
- if "emotion_model_name" not in st.session_state:
78
- st.session_state.emotion_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
79
- emotion_model_change()
80
-
81
- if "patent_data" not in st.session_state:
82
- f = open('./data/val.json')
83
- valData = json.load(f)
84
- f.close()
85
-
86
- patent_data = {}
87
- for num, label, abstract, claim in zip(valData["patent_numbers"],valData["labels"], valData["abstracts"], valData["claims"]):
88
- patent_data[num] = {"patent_number":num,"label":label,"abstract":abstract,"claim":claim}
89
-
90
- st.session_state.patent_data = patent_data
91
- st.session_state.patent_num = list(patent_data.keys())[0]
92
- st.session_state.weight = 0.5
93
- st.session_state.patent_abstract_model = ModelImplementation(
94
- './models/uspto_abstracts',
95
- DistilBertForSequenceClassification,
96
- 'distilbert-base-uncased',
97
- DistilBertTokenizerFast,
98
- TextClassificationPipeline,
99
- ParsePatentOutput,
100
- classifier_args={"return_all_scores":True},
101
- )
102
- print("Patent abstracts model initialized")
103
- st.session_state.patent_claim_model = ModelImplementation(
104
- './models/uspto_claims',
105
- DistilBertForSequenceClassification,
106
- 'distilbert-base-uncased',
107
- DistilBertTokenizerFast,
108
- TextClassificationPipeline,
109
- ParsePatentOutput,
110
- classifier_args={"return_all_scores":True},
111
- )
112
- print("Patent claims model initialized")
113
-
114
- # Title
115
- st.title("CSGY-6613 Project")
116
- # Subtitle
117
- st.markdown("_**Ryan Kim (rk2546)**_")
118
- st.markdown("---")
119
-
120
- def PageToHome():
121
- st.session_state.page = "home"
122
- def PageToEmotion():
123
- st.session_state.page = "emotion"
124
- def PageToPatent():
125
- st.session_state.page = "patent"
126
-
127
- with st.sidebar:
128
- st.subheader("Toolbox")
129
- home_selected = st.button("Home", on_click=PageToHome)
130
- emotion_selected = st.button(
131
- "Emotion Analysis [Milestone #2]",
132
- on_click=PageToEmotion
133
- )
134
- patent_selected = st.button(
135
- "Patent Prediction [Milestone #3]",
136
- on_click=PageToPatent
137
- )
138
-
139
- if st.session_state.page == "emotion":
140
- st.subheader("Sentiment Analysis")
141
- if "emotion_model" not in st.session_state:
142
- st.write("Loading model...")
143
- else:
144
- model_option = st.selectbox(
145
- "What sentiment analysis model do you want to use? NOTE: Lag may occur when loading a new model!",
146
- emotion_model_names,
147
- on_change=emotion_model_change,
148
- key="emotion_model_name"
149
- )
150
- form = st.form(key='sentiment-analysis-form')
151
- text_input = form.text_area(
152
- "Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.",
153
- placeholder=st.session_state.emotion_model.placeholders[0]
154
- )
155
- submit = form.form_submit_button('Submit')
156
- if submit:
157
- if text_input is None or len(text_input.strip()) == 0:
158
- to_eval = st.session_state.emotion_model.placeholders[0]
159
- else:
160
- to_eval = text_input.strip()
161
- st.write("You entered:")
162
- st.markdown("> {}".format(to_eval))
163
- st.write("Using the NLP model:")
164
- st.markdown("> {}".format(st.session_state.emotion_model_name))
165
- label, score = st.session_state.emotion_model.predict(to_eval)
166
- st.markdown("#### Result:")
167
- st.markdown("**{}**: {}".format(label,score))
168
-
169
- elif st.session_state.page == "patent":
170
- st.subheader("USPTO Patent Evaluation")
171
- st.markdown("Below are two inputs - one for an **ABSTRACT** and another for a list of **CLAIMS**. Enter both and select the \"Submit\" button to evaluate the patenteability of your idea.")
172
-
173
- patent_select_list = list(st.session_state.patent_data.keys())
174
- patent_index_option = st.selectbox(
175
- "Want to pre-populate with an existing patent? Select the index number of below.",
176
- patent_select_list,
177
- key="patent_num",
178
- )
179
-
180
- print(patent_index_option)
181
-
182
- if "patent_abstract_model" not in st.session_state or "patent_claim_model" not in st.session_state:
183
- st.write("Loading models...")
184
- else:
185
- with st.form(key='patent-form'):
186
- col1, col2 = st.columns(2)
187
- with col1:
188
- abstract_input = st.text_area(
189
- "Enter the abstract of the patent below",
190
- placeholder=st.session_state.patent_data[st.session_state.patent_num]["abstract"],
191
- height=400
192
- )
193
- with col2:
194
- claim_input = st.text_area(
195
- "Enter the claims of the patent below",
196
- placeholder=st.session_state.patent_data[st.session_state.patent_num]["claim"],
197
- height=400
198
- )
199
- weight_val = st.slider(
200
- "How much do the abstract and claims weight when aggregating a total softmax score?",
201
- min_value=-1.0,
202
- max_value=1.0,
203
- value=0.5,
204
- )
205
- submit = st.form_submit_button('Submit')
206
-
207
- if submit:
208
-
209
- is_custom = False
210
- if abstract_input is None or len(abstract_input.strip()) == 0:
211
- abstract_to_eval = st.session_state.patent_data[st.session_state.patent_num]["abstract"].strip()
212
- else:
213
- abstract_to_eval = abstract_input.strip()
214
- is_custom = True
215
-
216
- if claim_input is None or len(claim_input.strip()) == 0:
217
- claim_to_eval = st.session_state.patent_data[st.session_state.patent_num]["claim"].strip()
218
- else:
219
- claim_to_eval = claim_input.strip()
220
- is_custom = True
221
-
222
- #tokenized_claim = st.session_state.patent_claim_model.tokenizer.encode(claim_to_eval, padding=True, truncation=True, max_length=512, add_special_tokens = True)
223
- #untokenized_claim = st.session_state.patent_claim_model.tokenizer.decode(tokenized_claim)
224
- #claim_to_eval2 = untokenized_claim.replace("[CLS]","")
225
- #claim_to_eval2 = claim_to_eval2.replace("[SEP]","")
226
- #print(claim_to_eval2)
227
-
228
- abstract_response = st.session_state.patent_abstract_model.predict(abstract_to_eval)
229
- claim_response = st.session_state.patent_claim_model.predict(claim_to_eval)
230
- print(abstract_response[0])
231
- print(claim_response[0])
232
- print(weight_val)
233
-
234
- claim_weight = (1+weight_val)/2
235
- abstract_weight = 1-claim_weight
236
- aggregate_score = [
237
- {'label':'REJECTED','score':abstract_response[0][0]['score']*abstract_weight + claim_response[0][0]['score']*claim_weight},
238
- {'label':'ACCEPTED','score':abstract_response[0][1]['score']*abstract_weight + claim_response[0][1]['score']*claim_weight}
239
- ]
240
- aggregate_score_sorted = sorted(aggregate_score, key=lambda d: d['score'], reverse=True)
241
- print(aggregate_score_sorted)
242
- print(f'Original Rating: {st.session_state.patent_data[st.session_state.patent_num]["label"]}')
243
-
244
- st.markdown("---")
245
- answerCol1, answerCol2 = st.columns(2)
246
- with answerCol1:
247
- st.markdown("### Abstract Ratings")
248
- st.markdown("""
249
- > **Reject**: {}
250
- > **Accept**: {}
251
- """.format(abstract_response[0][0]["score"], abstract_response[0][1]["score"]))
252
- with answerCol2:
253
- st.markdown("### Claims Ratings")
254
- st.markdown("""
255
- > **Reject**: {}
256
- > **Accept**: {}
257
- """.format(claim_response[0][0]["score"], claim_response[0][1]["score"]))
258
-
259
- st.markdown(f'### Final Rating: **{aggregate_score_sorted[0]["label"]}**')
260
- st.markdown("""
261
- > **Reject**: {}
262
- > **Accept**: {}
263
- """.format(aggregate_score[0]['score'], aggregate_score[1]['score']))
264
-
265
- #if not is_custom:
266
- # st.markdown('**Original Score:**')
267
- # st.markdown(st.session_state.patent_data[st.session_state.patent_num]["label"])
268
-
269
-
270
-
271
-
272
-
273
- else:
274
- st.write("To get started, access the sidebar on the left (click the arrow in the top-left corner of the screen) and select a tool.")
275
-
276
- st.write("")
277
- st.write("")