File size: 15,974 Bytes
1fff800 ab7968f 1fff800 f856eff 1fff800 dc92394 1fff800 cbb024a 1fff800 445d770 1fff800 445d770 1fff800 445d770 1fff800 445d770 1fff800 fa16c7b 1fff800 445d770 1fff800 fa16c7b 1fff800 445d770 1fff800 445d770 1fff800 445d770 1fff800 445d770 1fff800 f5f3a5b 1fff800 f856eff 445d770 1fff800 445d770 1fff800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import logging
import json
import pandas as pd
import streamlit as st
from pinecone import Pinecone
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import (
StorageContext, VectorStoreIndex, SimpleDirectoryReader,
get_response_synthesizer, Settings
)
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import (
VectorIndexRetriever, RouterRetriever
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.tools import RetrieverTool
from llama_index.core.query_engine import (
RetrieverQueryEngine, FLAREInstructQueryEngine, MultiStepQueryEngine
)
from llama_index.core.indices.query.query_transform import (
StepDecomposeQueryTransform
)
from llama_index.llms.groq import Groq
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import PyMuPDFReader
import traceback
from oauth2client.service_account import ServiceAccountCredentials
import gspread
import uuid
from dotenv import load_dotenv
import os
from datetime import datetime
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
# Google Sheets setup
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds_dict = {
"type": os.getenv("type"),
"project_id": os.getenv("project_id"),
"private_key_id": os.getenv("private_key_id"),
"private_key": os.getenv("private_key"),
"client_email": os.getenv("client_email"),
"client_id": os.getenv("client_id"),
"auth_uri": os.getenv("auth_uri"),
"token_uri": os.getenv("token_uri"),
"auth_provider_x509_cert_url": os.getenv("auth_provider_x509_cert_url"),
"client_x509_cert_url": os.getenv("client_x509_cert_url")
}
creds_dict['private_key'] = creds_dict['private_key'].replace('\\n', '\n')
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
client = gspread.authorize(creds)
sheet = client.open("RAG").sheet1
# Fixed variables
AZURE_DEPLOYMENT_NAME = os.getenv("AZURE_DEPLOYMENT_NAME")
AZURE_API_VERSION = os.getenv("AZURE_API_VERSION")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
# Global variables for lazy loading
llm = None
pinecone_index = None
def log_and_exit(message):
logging.error(message)
raise SystemExit(message)
def initialize_apis(api, model, pinecone_api_key, groq_api_key, azure_api_key):
global llm, pinecone_index
try:
if llm is None:
llm = initialize_llm(api, model, groq_api_key, azure_api_key)
if pinecone_index is None:
pinecone_client = Pinecone(pinecone_api_key)
pinecone_index = pinecone_client.Index("ll144")
logging.info("Initialized LLM and Pinecone.")
except Exception as e:
log_and_exit(f"Error initializing APIs: {e}")
def initialize_llm(api, model, groq_api_key, azure_api_key):
if api == 'groq':
model_mappings = {
'mixtral-8x7b': "mixtral-8x7b-32768",
'llama3-8b': "llama3-8b-8192",
'llama3-70b': "llama3-70b-8192",
'gemma-7b': "gemma-7b-it"
}
return Groq(model=model_mappings[model], api_key=groq_api_key)
elif api == 'azure':
if model == 'gpt35':
return AzureOpenAI(
deployment_name=AZURE_DEPLOYMENT_NAME,
temperature=0,
api_key=azure_api_key,
azure_endpoint=AZURE_OPENAI_ENDPOINT,
api_version=AZURE_API_VERSION
)
def load_pdf_data(chunk_size):
reader = PyMuPDFReader()
file_extractor = {".pdf": reader}
documents = SimpleDirectoryReader(input_files=['LL144.pdf', 'LL144_Definitions.pdf'], file_extractor=file_extractor).load_data()
return documents
def create_index(documents, embedding_model_type="HF", embedding_model="BAAI/bge-large-en-v1.5", retriever_method="BM25", chunk_size=512):
global llm, pinecone_index
try:
embed_model = select_embedding_model(embedding_model_type, embedding_model)
Settings.llm = llm
Settings.embed_model = embed_model
Settings.chunk_size = chunk_size
if retriever_method in ["BM25", "BM25+Vector"]:
nodes = create_bm25_nodes(documents, chunk_size)
logging.info("Created BM25 nodes from documents.")
if retriever_method == "BM25+Vector":
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
logging.info("Created index for BM25+Vector from documents.")
return index, nodes
return None, nodes
else:
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
logging.info("Created index from documents.")
return index, None
except Exception as e:
log_and_exit(f"Error creating index: {e}")
def select_embedding_model(embedding_model_type, embedding_model):
if embedding_model_type == "HF":
return HuggingFaceEmbedding(model_name=embedding_model)
elif embedding_model_type == "OAI":
return OpenAIEmbedding() # Implement OAI Embedding if needed
def create_bm25_nodes(documents, chunk_size):
splitter = SentenceSplitter(chunk_size=chunk_size)
nodes = splitter.get_nodes_from_documents(documents)
return nodes
def select_retriever(index, nodes, retriever_method, top_k):
logging.info(f"Selecting retriever with method: {retriever_method}")
if nodes is not None:
logging.info(f"Available document IDs: {list(range(len(nodes)))}")
else:
logging.warning("Nodes are None")
if retriever_method == 'BM25':
return BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=top_k)
elif retriever_method == "BM25+Vector":
if index is None:
log_and_exit("Index must be initialized when using BM25+Vector retriever method.")
bm25_retriever = RetrieverTool.from_defaults(
retriever=BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=top_k),
description="BM25 Retriever"
)
vector_retriever = RetrieverTool.from_defaults(
retriever=VectorIndexRetriever(index=index),
description="Vector Retriever"
)
router_retriever = RouterRetriever.from_defaults(
retriever_tools=[bm25_retriever, vector_retriever],
llm=llm,
select_multi=True
)
return router_retriever
elif retriever_method == "Vector Search":
if index is None:
log_and_exit("Index must be initialized when using Vector Search retriever method.")
return VectorIndexRetriever(index=index, similarity_top_k=top_k)
else:
log_and_exit(f"Unsupported retriever method: {retriever_method}")
def setup_query_engine(index, response_mode, nodes=None, query_engine_method=None, retriever_method=None, top_k=2):
global llm
try:
logging.info(f"Setting up query engine with retriever_method: {retriever_method} and query_engine_method: {query_engine_method}")
retriever = select_retriever(index, nodes, retriever_method, top_k)
if retriever is None:
log_and_exit("Failed to create retriever. Index or nodes might be None.")
response_synthesizer = get_response_synthesizer(response_mode=response_mode)
index_query_engine = index.as_query_engine(similarity_top_k=top_k) if index else None
if query_engine_method == "FLARE":
query_engine = FLAREInstructQueryEngine(
query_engine=index_query_engine,
max_iterations=4,
verbose=False
)
elif query_engine_method == "MS":
query_engine = MultiStepQueryEngine(
query_engine=index_query_engine,
query_transform=StepDecomposeQueryTransform(llm=llm, verbose=False),
index_summary="Used to answer questions about the regulation"
)
else:
query_engine = RetrieverQueryEngine(retriever=retriever, response_synthesizer=response_synthesizer)
if query_engine is None:
log_and_exit("Failed to create query engine.")
return query_engine
except Exception as e:
logging.error(f"Error setting up query engine: {e}")
traceback.print_exc()
log_and_exit(f"Error setting up query engine: {e}")
def log_to_google_sheets(data):
try:
sheet.append_row(data)
logging.info("Logged data to Google Sheets.")
except Exception as e:
logging.error(f"Error logging data to Google Sheets: {e}")
def update_google_sheets(question_id, feedback=None, detailed_feedback=None, annotated_answer=None):
try:
existing_data = sheet.get_all_values()
headers = existing_data[0]
for i, row in enumerate(existing_data):
if row[0] == question_id:
if feedback is not None:
sheet.update_cell(i+1, headers.index("Feedback") + 1, feedback)
if detailed_feedback is not None:
sheet.update_cell(i+1, headers.index("Detailed Feedback") + 1, detailed_feedback)
if annotated_answer is not None:
sheet.update_cell(i+1, headers.index("annotated_answer") + 1, annotated_answer)
logging.info("Updated data in Google Sheets.")
return
except Exception as e:
logging.error(f"Error updating data in Google Sheets: {e}")
def run_streamlit_app():
if 'query_engine' not in st.session_state:
st.session_state.query_engine = None
st.title("RAG Chat Application")
col1, col2 = st.columns(2)
with col1:
pinecone_api_key = st.text_input("Pinecone API Key")
azure_api_key = st.text_input("Azure API Key")
groq_api_key = st.text_input("Groq API Key")
def update_api_based_on_model():
selected_model = st.session_state['selected_model']
if selected_model == 'gpt35':
st.session_state['selected_api'] = 'azure'
else:
st.session_state['selected_api'] = 'groq'
with col2:
selected_model = st.selectbox("Select Model", ["llama3-8b", "llama3-70b", "mixtral-8x7b", "gemma-7b", "gpt35"], index=4, key='selected_model', on_change=update_api_based_on_model)
selected_api = st.selectbox("Select API", ["azure", "groq"], index=0, key='selected_api', disabled=True)
embedding_model_type = "HF"
embedding_model = st.selectbox("Select Embedding Model", ["BAAI/bge-large-en-v1.5", "other_model"])
retriever_method = st.selectbox("Select Retriever Method", ["Vector Search", "BM25", "BM25+Vector"])
col3, col4 = st.columns(2)
with col3:
chunk_size = st.selectbox("Select Chunk Size", [128, 256, 512, 1024], index=2)
with col4:
top_k = st.selectbox("Select Top K", [1, 2, 3, 5, 6], index=1)
if st.button("Initialize"):
initialize_apis(st.session_state['selected_api'], selected_model, pinecone_api_key, groq_api_key, azure_api_key)
documents = load_pdf_data(chunk_size)
index, nodes = create_index(documents, embedding_model_type=embedding_model_type, embedding_model=embedding_model, retriever_method=retriever_method, chunk_size=chunk_size)
st.session_state.query_engine = setup_query_engine(index, response_mode="compact", nodes=nodes, query_engine_method=None, retriever_method=retriever_method, top_k=top_k)
st.success("Initialization complete.")
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
for chat_index, chat in enumerate(st.session_state.chat_history):
with st.chat_message("user"):
st.markdown(chat['user'])
with st.chat_message("bot"):
st.markdown("### Retrieved Contexts")
for node in chat.get('contexts', []):
st.markdown(
f"<div style='border:1px solid #ccc; padding:10px; margin:10px 0; font-size:small;'>{node.text}</div>",
unsafe_allow_html=True
)
st.markdown("### Answer")
st.markdown(chat['response'])
col1, col2 = st.columns([1, 1])
with col1:
if st.button("Annotate π", key=f"annotate_{chat_index}"):
chat['annotate'] = True
chat['feedback'] = -1
st.session_state.chat_history[chat_index] = chat
update_google_sheets(chat['id'], feedback=-1)
st.rerun()
with col2:
if st.button("Approve π", key=f"approve_{chat_index}"):
chat['approved'] = True
chat['feedback'] = 1
st.session_state.chat_history[chat_index] = chat
update_google_sheets(chat['id'], feedback=1, annotated_answer=chat['response'])
if chat.get('annotate', False):
annotated_answer = st.text_area("Annotate Answer", value=chat['response'], key=f"annotate_text_{chat_index}")
if st.button("Submit Annotated Answer", key=f"submit_annotate_{chat_index}"):
chat['annotated_answer'] = annotated_answer
chat['annotate'] = False
st.session_state.chat_history[chat_index] = chat
update_google_sheets(chat['id'], annotated_answer=annotated_answer)
feedback = st.text_area("How was the response? Does it match the context? Does it answer the question fully?", key=f"textarea_{chat_index}")
if st.button("Submit Feedback", key=f"submit_{chat_index}"):
chat['detailed_feedback'] = feedback
st.session_state.chat_history[chat_index] = chat
update_google_sheets(chat['id'], detailed_feedback=feedback)
if question := st.chat_input("Enter your question"):
if st.session_state.query_engine:
with st.spinner('Generating response...'):
# Compile chat history for context
history = "\n".join([f"Q: {chat['user']}\nA: {chat['response']}" for chat in st.session_state.chat_history])
full_query = f"{history}\nQ: {question}"
response = st.session_state.query_engine.query(full_query)
logging.info(f"Generated response: {response.response}")
logging.info(f"Retrieved contexts: {[node.text for node in response.source_nodes]}")
question_id = str(uuid.uuid4())
timestamp = datetime.now().isoformat()
st.session_state.chat_history.append({'id': question_id, 'user': question, 'response': response.response, 'contexts': response.source_nodes, 'feedback': 0, 'detailed_feedback': '', 'annotated_answer': '', 'timestamp': timestamp})
# Log initial query and response to Google Sheets without feedback
log_to_google_sheets([question_id, question, response.response, st.session_state['selected_api'], selected_model, embedding_model, retriever_method, chunk_size, top_k, 0, "", "", timestamp])
st.rerun()
else:
st.error("Query engine is not initialized. Please initialize it first.")
if __name__ == "__main__":
run_streamlit_app()
|