StableVITON / preprocess /detectron2 /tests /tracking /test_bbox_iou_tracker.py
rlawjdghek's picture
detectron2
a9a0ec2
raw
history blame
6.77 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
from copy import deepcopy
from typing import Dict
import torch
from detectron2.config import CfgNode as CfgNode_
from detectron2.config import instantiate
from detectron2.structures import Boxes, Instances
from detectron2.tracking.base_tracker import build_tracker_head
from detectron2.tracking.bbox_iou_tracker import BBoxIOUTracker # noqa
class TestBBoxIOUTracker(unittest.TestCase):
def setUp(self):
self._img_size = np.array([600, 800])
self._prev_boxes = np.array(
[
[101, 101, 200, 200],
[301, 301, 450, 450],
]
).astype(np.float32)
self._prev_scores = np.array([0.9, 0.9])
self._prev_classes = np.array([1, 1])
self._prev_masks = np.ones((2, 600, 800)).astype("uint8")
self._curr_boxes = np.array(
[
[302, 303, 451, 452],
[101, 102, 201, 203],
]
).astype(np.float32)
self._curr_scores = np.array([0.95, 0.85])
self._curr_classes = np.array([1, 1])
self._curr_masks = np.ones((2, 600, 800)).astype("uint8")
self._prev_instances = {
"image_size": self._img_size,
"pred_boxes": self._prev_boxes,
"scores": self._prev_scores,
"pred_classes": self._prev_classes,
"pred_masks": self._prev_masks,
}
self._prev_instances = self._convertDictPredictionToInstance(self._prev_instances)
self._curr_instances = {
"image_size": self._img_size,
"pred_boxes": self._curr_boxes,
"scores": self._curr_scores,
"pred_classes": self._curr_classes,
"pred_masks": self._curr_masks,
}
self._curr_instances = self._convertDictPredictionToInstance(self._curr_instances)
self._max_num_instances = 200
self._max_lost_frame_count = 0
self._min_box_rel_dim = 0.02
self._min_instance_period = 1
self._track_iou_threshold = 0.5
def _convertDictPredictionToInstance(self, prediction: Dict) -> Instances:
"""
convert prediction from Dict to D2 Instances format
"""
res = Instances(
image_size=torch.IntTensor(prediction["image_size"]),
pred_boxes=Boxes(torch.FloatTensor(prediction["pred_boxes"])),
pred_masks=torch.IntTensor(prediction["pred_masks"]),
pred_classes=torch.IntTensor(prediction["pred_classes"]),
scores=torch.FloatTensor(prediction["scores"]),
)
return res
def test_init(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_from_config(self):
cfg = CfgNode_()
cfg.TRACKER_HEADS = CfgNode_()
cfg.TRACKER_HEADS.TRACKER_NAME = "BBoxIOUTracker"
cfg.TRACKER_HEADS.VIDEO_HEIGHT = int(self._img_size[0])
cfg.TRACKER_HEADS.VIDEO_WIDTH = int(self._img_size[1])
cfg.TRACKER_HEADS.MAX_NUM_INSTANCES = self._max_num_instances
cfg.TRACKER_HEADS.MAX_LOST_FRAME_COUNT = self._max_lost_frame_count
cfg.TRACKER_HEADS.MIN_BOX_REL_DIM = self._min_box_rel_dim
cfg.TRACKER_HEADS.MIN_INSTANCE_PERIOD = self._min_instance_period
cfg.TRACKER_HEADS.TRACK_IOU_THRESHOLD = self._track_iou_threshold
tracker = build_tracker_head(cfg)
self.assertTrue(tracker._video_height == self._img_size[0])
def test_initialize_extra_fields(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
instances = tracker._initialize_extra_fields(self._curr_instances)
self.assertTrue(instances.has("ID"))
self.assertTrue(instances.has("ID_period"))
self.assertTrue(instances.has("lost_frame_count"))
def test_assign_new_id(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
instances = deepcopy(self._curr_instances)
instances = tracker._initialize_extra_fields(instances)
instances = tracker._assign_new_id(instances)
self.assertTrue(len(instances.ID) == 2)
self.assertTrue(instances.ID[0] == 2)
self.assertTrue(instances.ID[1] == 3)
def test_update(self):
cfg = {
"_target_": "detectron2.tracking.bbox_iou_tracker.BBoxIOUTracker",
"video_height": self._img_size[0],
"video_width": self._img_size[1],
"max_num_instances": self._max_num_instances,
"max_lost_frame_count": self._max_lost_frame_count,
"min_box_rel_dim": self._min_box_rel_dim,
"min_instance_period": self._min_instance_period,
"track_iou_threshold": self._track_iou_threshold,
}
tracker = instantiate(cfg)
prev_instances = tracker.update(self._prev_instances)
self.assertTrue(len(prev_instances.ID) == 2)
self.assertTrue(prev_instances.ID[0] == 0)
self.assertTrue(prev_instances.ID[1] == 1)
curr_instances = tracker.update(self._curr_instances)
self.assertTrue(len(curr_instances.ID) == 2)
self.assertTrue(curr_instances.ID[0] == 1)
self.assertTrue(curr_instances.ID[1] == 0)
if __name__ == "__main__":
unittest.main()