rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
11.9 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.layers import ShapeSpec, cat
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry
POINT_HEAD_REGISTRY = Registry("POINT_HEAD")
POINT_HEAD_REGISTRY.__doc__ = """
Registry for point heads, which makes prediction for a given set of per-point features.
The registered object will be called with `obj(cfg, input_shape)`.
"""
def roi_mask_point_loss(mask_logits, instances, point_labels):
"""
Compute the point-based loss for instance segmentation mask predictions
given point-wise mask prediction and its corresponding point-wise labels.
Args:
mask_logits (Tensor): A tensor of shape (R, C, P) or (R, 1, P) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images, C is the
number of foreground classes, and P is the number of points sampled for each mask.
The values are logits.
instances (list[Instances]): A list of N Instances, where N is the number of images
in the batch. These instances are in 1:1 correspondence with the `mask_logits`. So, i_th
elememt of the list contains R_i objects and R_1 + ... + R_N is equal to R.
The ground-truth labels (class, box, mask, ...) associated with each instance are stored
in fields.
point_labels (Tensor): A tensor of shape (R, P), where R is the total number of
predicted masks and P is the number of points for each mask.
Labels with value of -1 will be ignored.
Returns:
point_loss (Tensor): A scalar tensor containing the loss.
"""
with torch.no_grad():
cls_agnostic_mask = mask_logits.size(1) == 1
total_num_masks = mask_logits.size(0)
gt_classes = []
for instances_per_image in instances:
if len(instances_per_image) == 0:
continue
if not cls_agnostic_mask:
gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64)
gt_classes.append(gt_classes_per_image)
gt_mask_logits = point_labels
point_ignores = point_labels == -1
if gt_mask_logits.shape[0] == 0:
return mask_logits.sum() * 0
assert gt_mask_logits.numel() > 0, gt_mask_logits.shape
if cls_agnostic_mask:
mask_logits = mask_logits[:, 0]
else:
indices = torch.arange(total_num_masks)
gt_classes = cat(gt_classes, dim=0)
mask_logits = mask_logits[indices, gt_classes]
# Log the training accuracy (using gt classes and 0.0 threshold for the logits)
mask_accurate = (mask_logits > 0.0) == gt_mask_logits.to(dtype=torch.uint8)
mask_accurate = mask_accurate[~point_ignores]
mask_accuracy = mask_accurate.nonzero().size(0) / max(mask_accurate.numel(), 1.0)
get_event_storage().put_scalar("point/accuracy", mask_accuracy)
point_loss = F.binary_cross_entropy_with_logits(
mask_logits, gt_mask_logits.to(dtype=torch.float32), weight=~point_ignores, reduction="mean"
)
return point_loss
@POINT_HEAD_REGISTRY.register()
class StandardPointHead(nn.Module):
"""
A point head multi-layer perceptron which we model with conv1d layers with kernel 1. The head
takes both fine-grained and coarse prediction features as its input.
"""
def __init__(self, cfg, input_shape: ShapeSpec):
"""
The following attributes are parsed from config:
fc_dim: the output dimension of each FC layers
num_fc: the number of FC layers
coarse_pred_each_layer: if True, coarse prediction features are concatenated to each
layer's input
"""
super(StandardPointHead, self).__init__()
# fmt: off
num_classes = cfg.MODEL.POINT_HEAD.NUM_CLASSES
fc_dim = cfg.MODEL.POINT_HEAD.FC_DIM
num_fc = cfg.MODEL.POINT_HEAD.NUM_FC
cls_agnostic_mask = cfg.MODEL.POINT_HEAD.CLS_AGNOSTIC_MASK
self.coarse_pred_each_layer = cfg.MODEL.POINT_HEAD.COARSE_PRED_EACH_LAYER
input_channels = input_shape.channels
# fmt: on
fc_dim_in = input_channels + num_classes
self.fc_layers = []
for k in range(num_fc):
fc = nn.Conv1d(fc_dim_in, fc_dim, kernel_size=1, stride=1, padding=0, bias=True)
self.add_module("fc{}".format(k + 1), fc)
self.fc_layers.append(fc)
fc_dim_in = fc_dim
fc_dim_in += num_classes if self.coarse_pred_each_layer else 0
num_mask_classes = 1 if cls_agnostic_mask else num_classes
self.predictor = nn.Conv1d(fc_dim_in, num_mask_classes, kernel_size=1, stride=1, padding=0)
for layer in self.fc_layers:
weight_init.c2_msra_fill(layer)
# use normal distribution initialization for mask prediction layer
nn.init.normal_(self.predictor.weight, std=0.001)
if self.predictor.bias is not None:
nn.init.constant_(self.predictor.bias, 0)
def forward(self, fine_grained_features, coarse_features):
x = torch.cat((fine_grained_features, coarse_features), dim=1)
for layer in self.fc_layers:
x = F.relu(layer(x))
if self.coarse_pred_each_layer:
x = cat((x, coarse_features), dim=1)
return self.predictor(x)
@POINT_HEAD_REGISTRY.register()
class ImplicitPointHead(nn.Module):
"""
A point head multi-layer perceptron which we model with conv1d layers with kernel 1. The head
takes both fine-grained features and instance-wise MLP parameters as its input.
"""
def __init__(self, cfg, input_shape: ShapeSpec):
"""
The following attributes are parsed from config:
channels: the output dimension of each FC layers
num_layers: the number of FC layers (including the final prediction layer)
image_feature_enabled: if True, fine-grained image-level features are used
positional_encoding_enabled: if True, positional encoding is used
"""
super(ImplicitPointHead, self).__init__()
# fmt: off
self.num_layers = cfg.MODEL.POINT_HEAD.NUM_FC + 1
self.channels = cfg.MODEL.POINT_HEAD.FC_DIM
self.image_feature_enabled = cfg.MODEL.IMPLICIT_POINTREND.IMAGE_FEATURE_ENABLED
self.positional_encoding_enabled = cfg.MODEL.IMPLICIT_POINTREND.POS_ENC_ENABLED
self.num_classes = (
cfg.MODEL.POINT_HEAD.NUM_CLASSES if not cfg.MODEL.POINT_HEAD.CLS_AGNOSTIC_MASK else 1
)
self.in_channels = input_shape.channels
# fmt: on
if not self.image_feature_enabled:
self.in_channels = 0
if self.positional_encoding_enabled:
self.in_channels += 256
self.register_buffer("positional_encoding_gaussian_matrix", torch.randn((2, 128)))
assert self.in_channels > 0
num_weight_params, num_bias_params = [], []
assert self.num_layers >= 2
for l in range(self.num_layers):
if l == 0:
# input layer
num_weight_params.append(self.in_channels * self.channels)
num_bias_params.append(self.channels)
elif l == self.num_layers - 1:
# output layer
num_weight_params.append(self.channels * self.num_classes)
num_bias_params.append(self.num_classes)
else:
# intermediate layer
num_weight_params.append(self.channels * self.channels)
num_bias_params.append(self.channels)
self.num_weight_params = num_weight_params
self.num_bias_params = num_bias_params
self.num_params = sum(num_weight_params) + sum(num_bias_params)
def forward(self, fine_grained_features, point_coords, parameters):
# features: [R, channels, K]
# point_coords: [R, K, 2]
num_instances = fine_grained_features.size(0)
num_points = fine_grained_features.size(2)
if num_instances == 0:
return torch.zeros((0, 1, num_points), device=fine_grained_features.device)
if self.positional_encoding_enabled:
# locations: [R*K, 2]
locations = 2 * point_coords.reshape(num_instances * num_points, 2) - 1
locations = locations @ self.positional_encoding_gaussian_matrix.to(locations.device)
locations = 2 * np.pi * locations
locations = torch.cat([torch.sin(locations), torch.cos(locations)], dim=1)
# locations: [R, C, K]
locations = locations.reshape(num_instances, num_points, 256).permute(0, 2, 1)
if not self.image_feature_enabled:
fine_grained_features = locations
else:
fine_grained_features = torch.cat([locations, fine_grained_features], dim=1)
# features [R, C, K]
mask_feat = fine_grained_features.reshape(num_instances, self.in_channels, num_points)
weights, biases = self._parse_params(
parameters,
self.in_channels,
self.channels,
self.num_classes,
self.num_weight_params,
self.num_bias_params,
)
point_logits = self._dynamic_mlp(mask_feat, weights, biases, num_instances)
point_logits = point_logits.reshape(-1, self.num_classes, num_points)
return point_logits
@staticmethod
def _dynamic_mlp(features, weights, biases, num_instances):
assert features.dim() == 3, features.dim()
n_layers = len(weights)
x = features
for i, (w, b) in enumerate(zip(weights, biases)):
x = torch.einsum("nck,ndc->ndk", x, w) + b
if i < n_layers - 1:
x = F.relu(x)
return x
@staticmethod
def _parse_params(
pred_params,
in_channels,
channels,
num_classes,
num_weight_params,
num_bias_params,
):
assert pred_params.dim() == 2
assert len(num_weight_params) == len(num_bias_params)
assert pred_params.size(1) == sum(num_weight_params) + sum(num_bias_params)
num_instances = pred_params.size(0)
num_layers = len(num_weight_params)
params_splits = list(
torch.split_with_sizes(pred_params, num_weight_params + num_bias_params, dim=1)
)
weight_splits = params_splits[:num_layers]
bias_splits = params_splits[num_layers:]
for l in range(num_layers):
if l == 0:
# input layer
weight_splits[l] = weight_splits[l].reshape(num_instances, channels, in_channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, channels, 1)
elif l < num_layers - 1:
# intermediate layer
weight_splits[l] = weight_splits[l].reshape(num_instances, channels, channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, channels, 1)
else:
# output layer
weight_splits[l] = weight_splits[l].reshape(num_instances, num_classes, channels)
bias_splits[l] = bias_splits[l].reshape(num_instances, num_classes, 1)
return weight_splits, bias_splits
def build_point_head(cfg, input_channels):
"""
Build a point head defined by `cfg.MODEL.POINT_HEAD.NAME`.
"""
head_name = cfg.MODEL.POINT_HEAD.NAME
return POINT_HEAD_REGISTRY.get(head_name)(cfg, input_channels)