|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import trunc_normal_ as __call_trunc_normal_ |
|
from einops import rearrange |
|
from cwm.model.model_utils import Block, _cfg, PatchEmbed, get_sinusoid_encoding_table |
|
|
|
from torch import Tensor |
|
import cwm.utils as utils |
|
|
|
def trunc_normal_(tensor, mean=0., std=1.): |
|
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) |
|
|
|
|
|
def interpolate_pos_encoding(pos_embed, n_frames, h, w): |
|
N = pos_embed.shape[1] |
|
if N == (h * w * n_frames): |
|
return pos_embed |
|
old_h = old_w = int((N / n_frames) ** 0.5) |
|
patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2) |
|
|
|
patch_pos_embed = F.interpolate( |
|
patch_pos_embed, |
|
size=(h, w), |
|
mode='bicubic', |
|
) |
|
return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0) |
|
|
|
PRINT_PADDING = False |
|
|
|
class PretrainVisionTransformerEncoder(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, num_classes=0, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, tubelet_size=2, |
|
use_learnable_pos_emb=False, num_frames=16, embed_per_frame=False, clumping_factor=None, block_func=Block, k_bias=False, interp_noise=False, block_kwargs={}, legacy=False, xla_flash=False, learn_pos_embed=False): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.num_features = self.embed_dim = embed_dim |
|
self.patch_size = (tubelet_size,) + patch_size |
|
self.pt, self.ph, self.pw = self.patch_size |
|
self.h = int(img_size / self.ph) |
|
self.w = int(img_size / self.pw) |
|
self.hw = self.h * self.w |
|
|
|
self.clumping_factor = clumping_factor |
|
self.interp_noise = interp_noise |
|
|
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
|
|
if self.clumping_factor is not None: |
|
self.clumping_embed = nn.Conv3d(in_channels=embed_dim, out_channels=embed_dim, |
|
kernel_size=(tubelet_size, clumping_factor, clumping_factor), |
|
stride=(tubelet_size, clumping_factor, clumping_factor)) |
|
|
|
self._embed_per_frame = embed_per_frame |
|
if not self._embed_per_frame: |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,tubelet_size=tubelet_size,num_frames=num_frames) |
|
num_patches = self.patch_embed.num_patches |
|
elif self._embed_per_frame: |
|
assert (num_frames % tubelet_size) == 0 |
|
num_embeddings = (num_frames // tubelet_size) |
|
self.patch_embed = nn.ModuleList([ |
|
PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, |
|
in_chans=in_chans, embed_dim=embed_dim, |
|
tubelet_size=tubelet_size, num_frames=tubelet_size) |
|
for _ in range(num_embeddings)]) |
|
num_patches = self.patch_embed[0].num_patches * num_embeddings |
|
|
|
self.num_patches = num_patches |
|
self.num_frames = num_frames |
|
print("NUM PATCHES IN ENCODER", self.num_patches) |
|
|
|
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) |
|
|
|
if learn_pos_embed: |
|
self.pos_embed = nn.Parameter(self.pos_embed) |
|
|
|
self.learn_pos_embed = learn_pos_embed |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
block_func( |
|
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
if use_learnable_pos_emb: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _set_pos_embed(self, dim=None): |
|
if dim is None: |
|
dim = self.embed_dim |
|
if self.pos_embed is None: |
|
self.pos_embed = get_sinusoid_encoding_table( |
|
self.num_patches, dim) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def _get_pos_embed(self): |
|
return self.pos_embed |
|
|
|
def forward_block(self, x, idx): |
|
return self.blocks[idx](x) |
|
|
|
def interpolate_tensor_with_mask_token(self, |
|
x: Tensor, mask: Tensor, mask_token: Tensor, invert: bool = True |
|
) -> Tensor: |
|
""" |
|
Where mask == (0 if invert else 1), return x |
|
where mask == (1 if invert else 0), return mask_token |
|
Linearly interpolate between these using value of mask. |
|
""" |
|
|
|
|
|
B, N, C = x.shape |
|
assert mask.shape[1] == N, ( |
|
f"Number of tokens in mask ({mask.shape[1]}) does not match " |
|
f"number of tokens in input ({N})" |
|
) |
|
|
|
assert mask_token.shape[-1] == C, ( |
|
f"Dimensionality of mask token ({mask_token.shape[-1]}) does not match " |
|
f"dimensionality of tokens in input ({C})" |
|
) |
|
|
|
|
|
mask = mask.to(x).clip(min=0.0, max=1.0) |
|
mask = (1.0 - mask) if invert else mask |
|
mask = mask.unsqueeze(-1) |
|
|
|
|
|
mask_token = mask_token.view(1, 1, C).expand(B, N, -1) |
|
|
|
|
|
start = mask_token |
|
end = x |
|
|
|
return start + mask * (end - start) |
|
|
|
def interpolate_tensor_with_noise(self, |
|
x: Tensor, mask: Tensor, invert: bool = True |
|
) -> Tensor: |
|
""" |
|
Where mask == (0 if invert else 1), return x |
|
where mask == (1 if invert else 0), return mask_token |
|
Linearly interpolate between these using value of mask. |
|
""" |
|
|
|
|
|
B, N, C = x.shape |
|
assert mask.shape[1] == N, ( |
|
f"Number of tokens in mask ({mask.shape[1]}) does not match " |
|
f"number of tokens in input ({N})" |
|
) |
|
|
|
|
|
mask = mask.to(x).clip(min=0.0, max=1.0) |
|
mask = (1.0 - mask) if invert else mask |
|
mask = mask.unsqueeze(-1) |
|
|
|
|
|
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1) |
|
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1) |
|
|
|
|
|
|
|
rand_vec = torch.randn(B, N, 3, self.patch_size[-2], self.patch_size[-1]) * std + mean |
|
|
|
rand_vec = rand_vec.to(x.device).to(x.dtype).view(B, N, -1) |
|
|
|
start = rand_vec |
|
end = x |
|
|
|
return start + mask * (end - start) |
|
|
|
def tokenize(self, x, mask=None): |
|
|
|
if not self._embed_per_frame: |
|
x = self.patch_embed(x) |
|
elif self._embed_per_frame: |
|
x = torch.cat([ |
|
self.patch_embed[i]( |
|
x[:,:,(i*self.pt):((i+1)*self.pt)]) |
|
for i in range(len(self.patch_embed))], 1) |
|
|
|
pos_embed = self._get_pos_embed().type_as(x).to(x.device).clone() |
|
if not self._learnable_pos_embed: |
|
pos_embed = pos_embed.detach() |
|
x = x + pos_embed |
|
return (x, mask) |
|
|
|
def tokenize_and_mask(self, x, mask): |
|
|
|
x, mask = self.tokenize(x, mask) |
|
B, _, C = x.shape |
|
|
|
x_vis = x[~mask].reshape(B, -1, C) |
|
return x_vis |
|
|
|
def tokenize_and_mask_variable_size(self, x, mask): |
|
|
|
x, mask = self.tokenize(x, mask) |
|
B, _, C = x.shape |
|
all_batches = [] |
|
max_len = 0 |
|
all_len = [] |
|
for i in range(B): |
|
x_vis = x[i, ~mask[i]] |
|
if x_vis.shape[0] > max_len: |
|
max_len = x_vis.shape[0] |
|
all_batches.append(x_vis) |
|
all_len.append(x_vis.shape[0]) |
|
|
|
|
|
x_vis = torch.stack([F.pad(batch, (0,0,0,max_len-batch.shape[0]), mode='constant', value=0) for batch in all_batches]) |
|
|
|
return x_vis, all_len |
|
|
|
def forward_features(self, x, mask, move_patches, static_patches, delta, mask_token, res=1, return_feat_layer=None): |
|
_, _, T, H, W = x.shape |
|
|
|
if self.interp_noise: |
|
|
|
p0 = self.patch_size[-2] |
|
p1 = self.patch_size[-1] |
|
x = rearrange(x, 'b c t (h p0) (w p1) -> b (t h w) (p0 p1 c)', p0=p0, p1=p1, h=H//p0, w=W//p1) |
|
|
|
x = self.interpolate_tensor_with_noise(x, mask, invert=True) |
|
x = rearrange(x, 'b n (p c) -> b n p c', c=3) |
|
|
|
x = rearrange(x, |
|
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)', |
|
p0=1, |
|
p1=self.patch_size[-2], |
|
p2=self.patch_size[-1], |
|
h=H//self.patch_size[-2], |
|
w=W//self.patch_size[-1]) |
|
|
|
x = embed = self.patch_embed(x) |
|
|
|
if res != 1: |
|
|
|
p0 = self.patch_size[-2] |
|
p1 = self.patch_size[-1] |
|
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res)) |
|
else: |
|
|
|
pos_embed = self._get_pos_embed() |
|
|
|
pos_embed = pos_embed.type_as(x) |
|
|
|
if not self.learn_pos_embed: |
|
pos_embed = pos_embed.to(x.device).clone().detach() |
|
|
|
x = x + pos_embed |
|
B, _, C = x.shape |
|
|
|
if not self.interp_noise: |
|
x_vis = self.interpolate_tensor_with_mask_token(x, mask, mask_token, invert=True) |
|
else: |
|
x_vis = x |
|
|
|
if move_patches is not None: |
|
|
|
assert B == 1, "Only support batch size 1 for now" |
|
for (px, py) in move_patches: |
|
idx = px * self.w + py |
|
dx, dy = delta |
|
nx, ny = px + dx, py + dy |
|
new_idx = nx * self.w + ny + (self.patch_embed.num_frames - 1) * (self.h * self.w) |
|
|
|
emb = embed[:, idx] |
|
pos_emb = pos_embed[:, new_idx] |
|
emb = emb + pos_emb |
|
x_vis = torch.cat([x_vis, emb[None]], 1) |
|
|
|
if static_patches is not None: |
|
for (px, py) in static_patches: |
|
idx = px * self.w + py |
|
new_idx = px * self.w + py + (self.patch_embed.num_frames - 1) * (self.h * self.w) |
|
emb = embed[:, idx] |
|
pos_emb = pos_embed[:, new_idx] |
|
emb = emb + pos_emb |
|
x_vis = torch.cat([x_vis, emb[None]], 1) |
|
|
|
for blk_idx, blk in enumerate(self.blocks): |
|
x_vis = blk(x_vis) |
|
if blk_idx == return_feat_layer: |
|
return x_vis |
|
|
|
x_vis = self.norm(x_vis) |
|
return x_vis |
|
|
|
def _set_inputs(self, *args, **kwargs): |
|
pass |
|
|
|
def forward(self, x, mask, mask_token, return_feat_layer=None, timestamps=None, move_patches=None, static_patches=None, delta=None, res=1): |
|
self._set_inputs(x, mask) |
|
|
|
x = self.forward_features(x, mask, move_patches, static_patches, delta, mask_token, return_feat_layer=return_feat_layer, res=res) |
|
|
|
|
|
if return_feat_layer is not None and return_feat_layer < len(self.blocks): |
|
return x |
|
|
|
x = self.head(x) |
|
return x |
|
|
|
class PretrainVisionTransformerDecoder(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, patch_size=(16, 16), num_classes=768, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, block_func=Block, block_kwargs={}, k_bias=False, legacy=True, xla_flash=False |
|
): |
|
super().__init__() |
|
|
|
|
|
self.num_classes = num_classes |
|
|
|
self.num_features = self.embed_dim = embed_dim |
|
self.patch_size = patch_size |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
block_func( |
|
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=''): |
|
self.num_classes = num_classes |
|
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
|
|
def forward_block(self, x, idx): |
|
return self.blocks[idx](x) |
|
|
|
def get_last_tokens(self, x, return_token_num): |
|
if return_token_num > 0: |
|
return self.head(self.norm(x[:,-return_token_num:])) |
|
elif return_token_num == 0: |
|
return self.head(self.norm(x))[:,x.size(1):] |
|
else: |
|
return self.head(self.norm(x)) |
|
|
|
def forward(self, x, return_token_num, return_feat_layer=None): |
|
|
|
|
|
for blk_idx, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
|
|
|
|
if blk_idx == return_feat_layer: |
|
return x |
|
|
|
if return_token_num > 0: |
|
x = self.head(self.norm(x[:, -return_token_num:])) |
|
else: |
|
x = self.head(self.norm(x)) |
|
|
|
return x |
|
|
|
class PretrainVisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
default_input_kwargs = {'unnormalize': True} |
|
def __init__(self, |
|
img_size=224, |
|
patch_size=(16, 16), |
|
main_input=None, |
|
main_input_kwargs=default_input_kwargs, |
|
encoder_func=PretrainVisionTransformerEncoder, |
|
encoder_in_chans=3, |
|
encoder_num_classes=0, |
|
encoder_embed_dim=768, |
|
encoder_depth=12, |
|
encoder_num_heads=12, |
|
encoder_block_func=Block, |
|
encoder_block_kwargs={}, |
|
decoder_num_classes=None, |
|
decoder_embed_dim=512, |
|
decoder_depth=8, |
|
decoder_num_heads=8, |
|
decoder_block_func=Block, |
|
decoder_block_kwargs={}, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
k_bias=False, |
|
qk_scale=None, |
|
num_frames=16, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=nn.LayerNorm, |
|
init_values=0., |
|
spacetime_separable_pos_embed=False, |
|
tubelet_size=2, |
|
num_classes=0, |
|
in_chans=0, |
|
embed_per_frame=False, |
|
flow_model_ckpt=None, |
|
flow_frames=None, |
|
random_input=False, |
|
use_flash_attention=False, |
|
additional_decoder_for_transition=False, |
|
additional_decoder_for_x3_hat=False, |
|
clumping_factor=None, |
|
return_detectron_format=False, |
|
out_feature='out_feature', |
|
interp_noise=False, |
|
legacy=True, |
|
xla_flash=False, |
|
learn_pos_embed=False, |
|
**kwargs |
|
): |
|
super().__init__() |
|
|
|
encoder_block_kwargs.update({'flash_attention': use_flash_attention}) |
|
decoder_block_kwargs.update({'flash_attention': use_flash_attention}) |
|
|
|
self.clumping_factor = clumping_factor |
|
|
|
self.interp_noise = interp_noise |
|
|
|
self.learn_pos_embed = learn_pos_embed |
|
|
|
if self.clumping_factor is not None: |
|
print('Clumping factor = %d' % self.clumping_factor) |
|
self.clumping_embed = nn.Conv3d(in_channels=decoder_embed_dim, out_channels=decoder_embed_dim, |
|
kernel_size=(1, clumping_factor, clumping_factor), |
|
stride=(1, clumping_factor, clumping_factor)) |
|
self.clumping_embed.apply(self._init_weights) |
|
|
|
self.up = nn.ConvTranspose2d(decoder_embed_dim, decoder_embed_dim, kernel_size=2, stride=2) |
|
self.up.apply(self._init_weights) |
|
|
|
self.encoder = encoder_func( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=encoder_in_chans, |
|
num_classes=encoder_num_classes, |
|
embed_dim=encoder_embed_dim, |
|
depth=encoder_depth, |
|
num_heads=encoder_num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
tubelet_size=tubelet_size, |
|
num_frames=num_frames, |
|
embed_per_frame=embed_per_frame, |
|
block_func=encoder_block_func, |
|
block_kwargs=encoder_block_kwargs, |
|
clumping_factor=clumping_factor, |
|
k_bias=k_bias, |
|
interp_noise = interp_noise, |
|
legacy=legacy, |
|
xla_flash=xla_flash, |
|
learn_pos_embed=learn_pos_embed, |
|
**kwargs) |
|
|
|
if not return_detectron_format: |
|
self.decoder = PretrainVisionTransformerDecoder( |
|
patch_size=patch_size, |
|
num_classes= 3*tubelet_size*(patch_size[0]*patch_size[1]) if decoder_num_classes is None else decoder_num_classes, |
|
embed_dim=decoder_embed_dim, |
|
depth=decoder_depth, |
|
num_heads=decoder_num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
block_func=decoder_block_func, |
|
k_bias=k_bias, xla_flash=xla_flash, |
|
block_kwargs=decoder_block_kwargs, legacy=legacy) |
|
|
|
self.encoder_to_decoder = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=k_bias) |
|
|
|
if not self.interp_noise: |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, encoder_embed_dim)) |
|
trunc_normal_(self.mask_token, std=.02) |
|
else: |
|
self.mask_token = None |
|
|
|
self.timestamps = None |
|
self.encoder.timestamps = None |
|
|
|
if self.learn_pos_embed: |
|
self.pos_embed = nn.Parameter(get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim)) |
|
else: |
|
self.pos_embed = get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim) |
|
|
|
self.num_frames = num_frames |
|
self.num_patches = self.encoder.num_patches |
|
if self.num_frames is not None: |
|
self.num_patches_per_frame = self.num_patches // self.num_frames |
|
else: |
|
self.num_patches_per_frame = self.num_patches |
|
self.patch_size = self.encoder.patch_size |
|
if isinstance(img_size, int): |
|
self.image_size = (img_size, img_size) |
|
else: |
|
assert hasattr(img_size, '__len__'), img_size |
|
self.image_size = img_size |
|
|
|
self.return_detectron_format = return_detectron_format |
|
|
|
@property |
|
def mask_size(self): |
|
return (self.num_frames // self.patch_size[0], |
|
self.image_size[-2] // self.patch_size[-2], |
|
self.image_size[-1] // self.patch_size[-1]) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def get_num_layers(self): |
|
return len(self.blocks) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token', 'mask_token'} |
|
|
|
|
|
|
|
def unpatchify(self, x, mask): |
|
|
|
B, N, C = x.shape |
|
h, w = self.mask_size[-2:] |
|
patch_size = self.patch_size[-2:] |
|
|
|
recon = torch.zeros(B, h*w, C).to(x) |
|
recon[mask[:, -h*w:]] = x.flatten(0, 1) |
|
|
|
rec_imgs = rearrange(recon, 'b n (p c) -> b n p c', c=3) |
|
|
|
rec_imgs = rearrange(rec_imgs, |
|
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)', |
|
p0=1, |
|
p1=patch_size[0], |
|
p2=patch_size[1], |
|
h=h, |
|
w=w) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return rec_imgs |
|
|
|
|
|
def forward(self, x, mask, timestamps=None, return_feat_layer=None, res=1, *args, get_encoder_out=False, **kwargs): |
|
|
|
_, _, T, _, _ = x.shape |
|
|
|
self.device = x.device |
|
|
|
enc_out = self.encoder(x, mask, self.mask_token, timestamps=timestamps, return_feat_layer=return_feat_layer, res=res, *args, **kwargs) |
|
|
|
x_vis = self.encoder_to_decoder(enc_out) |
|
|
|
|
|
if return_feat_layer is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
return_feat_layer = return_feat_layer - len(self.encoder.blocks) - 1 |
|
if return_feat_layer < 0: |
|
return x_vis |
|
|
|
|
|
if res != 1: |
|
p0 = self.patch_size[-2] |
|
p1 = self.patch_size[-1] |
|
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res)) |
|
else: |
|
pos_embed = self.pos_embed |
|
dec_pos_embed = pos_embed.expand(x_vis.size(0), -1, -1).type_as(x) |
|
|
|
if not self.learn_pos_embed: |
|
dec_pos_embed = dec_pos_embed.to(x.device).clone().detach() |
|
|
|
x_vis = x_vis + dec_pos_embed |
|
|
|
|
|
x_all = self.decoder(x_vis, 0, return_feat_layer=return_feat_layer) |
|
|
|
if get_encoder_out: |
|
return x_all, enc_out |
|
|
|
return x_all |
|
|
|
def get_counterfactual(self, x, move_patches): |
|
''' |
|
:param x: input tensor [1, C, T, H, W]: support only batch size 1 for now |
|
:param move_patches: torch tensor [N, 4] sized array where each row contains patch motion [x1, y1, x2, y2] in pixel coordinates |
|
:return: |
|
''' |
|
B, _, T, H, H = x.shape |
|
|
|
mask = torch.ones(B, self.encoder.hw * self.encoder.num_frames).to(x.device).bool() |
|
mask[:, :self.encoder.hw * (self.encoder.num_frames - 1)] = False |
|
|
|
move_patches = (move_patches / H) * self.encoder.h |
|
move_patches = move_patches.to(torch.int64) |
|
|
|
for x1, y1, x2, y2 in move_patches: |
|
idx2 = x2 * self.encoder.w + y2 + (self.encoder.num_frames - 1) * (self.encoder.h * self.encoder.w) |
|
mask[:, idx2] = False |
|
im_x1 = x1 * self.encoder.ph |
|
im_y1 = y1 * self.encoder.pw |
|
im_x2 = x2 * self.encoder.ph |
|
im_y2 = y2 * self.encoder.pw |
|
x[:, :, -1, im_x2:im_x2 + self.encoder.ph, im_y2:im_y2 + self.encoder.pw] = x[:, :, -2, |
|
im_x1:im_x1 + self.encoder.ph, |
|
im_y1:im_y1 + self.encoder.pw] |
|
|
|
prediction = self.forward(x, mask)[:, -self.encoder.hw:] |
|
|
|
prediction = utils.unpatchify_cwm( |
|
prediction, |
|
patch_size=self.encoder.patch_size[-1], |
|
) |
|
|
|
return prediction |
|
|
|
|
|
def pretrain_vit_base_256_scaffold(**kwargs): |
|
model = PretrainVisionTransformer( |
|
img_size=256, |
|
encoder_embed_dim=768, |
|
encoder_depth=12, |
|
encoder_num_heads=12, |
|
encoder_num_classes=0, |
|
decoder_embed_dim=768, |
|
decoder_num_heads=12, |
|
decoder_depth=12, |
|
mlp_ratio=4, |
|
|
|
qkv_bias=True, |
|
k_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs) |
|
model.default_cfg = _cfg() |
|
return model |
|
|
|
|