|
|
|
import argparse |
|
import datetime |
|
import numpy as np |
|
import random |
|
import time |
|
import torch |
|
import json |
|
import os |
|
from pathlib import Path |
|
from optim_factory import create_optimizer |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from utils import NativeScalerWithGradNormCount as NativeScaler |
|
import utils |
|
from cwm.data.dataset_utils import build_pretraining_dataset |
|
from cwm.model import model_pretrain |
|
from engine_for_pretraining import train_one_epoch |
|
import wandb |
|
import torch.backends.cudnn as cudnn |
|
np.random.seed(0) |
|
random.seed(0) |
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser('CWM pre-training script', add_help=False) |
|
|
|
|
|
parser.add_argument('--batch_size', default=64, type=int, help='per-GPU batch-size') |
|
parser.add_argument('--epochs', default=800, type=int, help='number of training epochs') |
|
parser.add_argument('--save_ckpt_freq', default=50, type=int, help='save checkpoint frequency') |
|
parser.add_argument('--print_freq', default=1, type=int, help='frequency of printing training stats') |
|
parser.add_argument('--accum_iter', default=1, type=int, help='number of steps to accumulate gradients') |
|
parser.add_argument('--eval', action='store_true', help='evaluation mode') |
|
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') |
|
parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') |
|
parser.add_argument('--device', default='cuda', help='device to use for training / testing') |
|
parser.add_argument('--seed', default=0, type=int) |
|
parser.add_argument('--val_after', default=50, type=int) |
|
parser.add_argument('--resume', default='', help='resume from checkpoint') |
|
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') |
|
parser.add_argument('--use_wandb', action='store_true', help='use wandb for logging') |
|
|
|
|
|
parser.add_argument('--model', default='vitb_8x8patch_3frames', type=str, help='Name of model to train') |
|
parser.add_argument('--context_frames', type=int, default=2, help='number of frames model will see densely') |
|
parser.add_argument('--target_frames', type=int, default=1, help='number of frames model will see sparsely') |
|
parser.add_argument('--temporal_units', type=str, default='ms', help='the units in which time is defined') |
|
parser.add_argument('--sampling_rate', type=int, default=150, help='temporal gap between context/target frames') |
|
parser.add_argument('--context_target_gap', type=int, nargs='+', default=[150, 150], help='gap between context/target') |
|
|
|
|
|
parser.add_argument('--mask_type', default='rotated_table', type=str, help='masked strategy') |
|
parser.add_argument('--mask_ratio', default=0.75, type=float, help='masking ratio') |
|
parser.add_argument('--mask_kwargs', default='', type=json.loads, help='extra arguments for masking generator') |
|
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT', help='Drop path rate (default: 0.1)') |
|
|
|
|
|
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default:adamw)') |
|
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer epsilon') |
|
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas') |
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') |
|
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') |
|
parser.add_argument('--weight_decay_end', type=float, default=0.05, help='Final value of the weight decay.') |
|
parser.add_argument('--lr', type=float, default=1.5e-4, metavar='LR', help='learning rate (default: 1.5e-4)') |
|
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate') |
|
parser.add_argument('--min_lr', type=float, default=0, metavar='LR', help='lower lr bound for cyclic schedulers)') |
|
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR') |
|
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='steps to warmup LR') |
|
|
|
|
|
parser.add_argument('--data_path', default='/path/to/list_kinetics-400', type=str, help='dataset path') |
|
parser.add_argument('--data_path_list', type=str, nargs='+', default=None, help='[path1, path2, path3, ...]') |
|
parser.add_argument('--num_workers', default=10, type=int) |
|
|
|
|
|
parser.add_argument('--augmentation_type', type=str, default='multiscale', choices=['multiscale', 'center', 'none']) |
|
parser.add_argument('--augmentation_scales', type=float, nargs='+', default=[1.0, 0.875, 0.75, 0.66]) |
|
|
|
|
|
|
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--local_rank', default=-1, type=int) |
|
parser.add_argument('--dist_on_itp', action='store_true') |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
|
|
return parser.parse_args() |
|
|
|
|
|
|
|
def export_model_parameters(model): |
|
with open('model_parameters.txt', 'w') as f: |
|
for name, param in model.named_parameters(): |
|
f.write(f"{name} {param.size()}\n") |
|
|
|
|
|
def main(args): |
|
|
|
utils.init_distributed_mode(args) |
|
cudnn.benchmark = True |
|
device = torch.device(args.device) |
|
num_tasks = utils.get_world_size() |
|
sampler_rank = global_rank = utils.get_rank() |
|
world_size = utils.get_world_size() |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
model = getattr(model_pretrain, args.model)() |
|
args.input_size = int(model.encoder.patch_embed.img_size[0]) |
|
args.tubelet_size = model.patch_size[0] |
|
|
|
args.mask_input_size = ( |
|
(args.context_frames + args.target_frames) // args.tubelet_size, |
|
args.input_size // model.patch_size[-2], |
|
args.input_size // model.patch_size[-1], |
|
) |
|
|
|
|
|
dataset_train = build_pretraining_dataset(args) |
|
|
|
sampler_train = torch.utils.data.DistributedSampler( |
|
dataset_train, |
|
num_replicas=num_tasks, |
|
rank=sampler_rank, |
|
shuffle=True, |
|
drop_last=True |
|
) |
|
|
|
data_loader_train = torch.utils.data.DataLoader( |
|
dataset_train, |
|
sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, drop_last=True, |
|
worker_init_fn=utils.seed_worker, |
|
) |
|
|
|
num_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks |
|
|
|
n_params, n_params_str = utils.get_model_num_parameters(model) |
|
|
|
total_batch_size = args.batch_size * world_size * args.accum_iter |
|
|
|
|
|
export_model_parameters(model) |
|
|
|
model = DDP(model.to(device), device_ids=[args.gpu], find_unused_parameters=False) |
|
|
|
|
|
optimizer = create_optimizer(args, model.module) |
|
loss_scaler = NativeScaler() |
|
|
|
|
|
args.lr = args.lr * total_batch_size / 256 |
|
args.min_lr = args.min_lr * total_batch_size / 256 |
|
args.warmup_lr = args.warmup_lr * total_batch_size / 256 |
|
|
|
lr_schedule_values = utils.cosine_scheduler( |
|
args.lr, args.min_lr, args.epochs, num_steps_per_epoch, |
|
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, |
|
) |
|
|
|
wd_schedule_values = utils.cosine_scheduler( |
|
args.weight_decay, args.weight_decay_end, args.epochs, num_steps_per_epoch |
|
) |
|
|
|
|
|
utils.auto_load_model(args=args, model=model, optimizer=optimizer, loss_scaler=loss_scaler) |
|
|
|
|
|
print("world size: %d" % args.world_size) |
|
print("model: %s" % args.model) |
|
print("image size: %s" % str(args.input_size)) |
|
print("patch size: %s" % str(model.module.encoder.patch_embed.patch_size[-2:])) |
|
print("context frames: %s" % str(args.context_frames)) |
|
print("target frames: %s" % str(args.target_frames)) |
|
print("per-device batch size: %d" % total_batch_size) |
|
print("total batch size: %d" % total_batch_size) |
|
print("grad accumulation: %d" % args.accum_iter) |
|
print("dataset length: %d" % len(dataset_train)) |
|
print("steps per epoch: %d" % num_steps_per_epoch) |
|
print("num parameters: %s" % n_params_str) |
|
print("lr: %.8f" % args.lr) |
|
|
|
|
|
if args.use_wandb and utils.is_main_process(): |
|
wandb.init(project="cwm", name=args.output_dir.split('/')[-1], config=args) |
|
|
|
|
|
print(f'start training at epoch {args.start_epoch} for {args.epochs} epochs') |
|
start_time = time.time() |
|
|
|
for epoch in range(args.start_epoch, args.epochs): |
|
|
|
if args.distributed: |
|
data_loader_train.sampler.set_epoch(epoch) |
|
|
|
|
|
train_stats = train_one_epoch( |
|
model, data_loader_train, optimizer, device, epoch, loss_scaler, |
|
start_steps=epoch * num_steps_per_epoch, |
|
lr_schedule_values=lr_schedule_values, |
|
wd_schedule_values=wd_schedule_values, |
|
args=args, |
|
global_rank=global_rank, |
|
) |
|
|
|
|
|
if args.output_dir and ((epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs): |
|
utils.save_model(args=args, model=model, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) |
|
|
|
|
|
start_time = time.time() |
|
do_write = (global_rank == 0) if args.use_xla else utils.is_main_process() |
|
if args.output_dir and do_write: |
|
log_stats = { |
|
**{f'train/{k}': v for k, v in train_stats.items()}, |
|
'epoch': epoch, |
|
'params': n_params, |
|
'epoch_time': time.time() - start_time |
|
} |
|
|
|
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
if args.use_wandb: |
|
wandb.log(log_stats) |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('Training time {}'.format(total_time_str)) |
|
|
|
|
|
if __name__ == '__main__': |
|
opts = get_args() |
|
|
|
if opts.output_dir: |
|
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
main(opts) |
|
|