|
import datetime |
|
import io |
|
import os |
|
import random |
|
import sys |
|
import time |
|
from collections import defaultdict, deque |
|
from pathlib import Path |
|
|
|
import matplotlib |
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
from timm.utils import get_state_dict |
|
from torch import inf |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def patchify(x, tubelet_size, patch_size): |
|
''' |
|
:param x: [B, C, T, H, W] |
|
:param tubelet_size: 2 |
|
:param patch_size: (8, 8) |
|
:return: |
|
''' |
|
videos_squeeze = rearrange(x, |
|
'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c', |
|
p0=tubelet_size, |
|
p1=patch_size[0], |
|
p2=patch_size[1]) |
|
|
|
videos_patch = rearrange(videos_squeeze, 'b n p c -> b n (p c)') |
|
|
|
return videos_patch |
|
|
|
def imagenet_unnormalize(x, temporal_dim=2): |
|
device = x.device |
|
|
|
if len(x.shape) == 3: |
|
if x.shape[0] == 3: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x) |
|
else: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x) |
|
elif len(x.shape) == 4: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x) |
|
elif len(x.shape) == 5: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x) |
|
|
|
if temporal_dim == 2: |
|
mean = mean.transpose(1,2) |
|
std = std.transpose(1,2) |
|
|
|
return x * std + mean |
|
|
|
def imagenet_normalize(x, temporal_dim=2): |
|
device = x.device |
|
|
|
if len(x.shape) == 3: |
|
if x.shape[0] == 3: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x) |
|
else: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x) |
|
elif len(x.shape) == 4: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x) |
|
elif len(x.shape) == 5: |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x) |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x) |
|
|
|
if temporal_dim == 2: |
|
mean = mean.transpose(1,2) |
|
std = std.transpose(1,2) |
|
|
|
return (x - mean) / std |
|
|
|
def sinusoidal_embedding(x, n_freq=5, keep_ori=True): |
|
""" |
|
create sin embedding for 3d vectors |
|
input: |
|
x: *x3 |
|
n_freq: number of raised frequency |
|
""" |
|
|
|
shape = list(x.shape) |
|
assert x.shape[-1] == 3, "expect the last dimension to have size 3" |
|
x = x.reshape(-1, 3) |
|
|
|
embedded = [] |
|
if keep_ori: |
|
embedded.append(x) |
|
emb_fns = [torch.sin, torch.cos] |
|
freqs = 2. ** torch.linspace(0., n_freq - 1, steps=n_freq) |
|
for freq in freqs: |
|
for emb_fn in emb_fns: |
|
embedded.append(emb_fn(freq * x)) |
|
embedded = torch.cat(embedded, dim=-1) |
|
C = embedded.shape[-1] |
|
embedded = embedded.reshape(shape[:-1] + [C]) |
|
return embedded |
|
|
|
class SmoothedValue(object): |
|
"""Track a series of values and provide access to smoothed values over a |
|
window or the global series average. |
|
""" |
|
|
|
def __init__(self, window_size=20, fmt=None): |
|
if fmt is None: |
|
fmt = "{median:.4f} ({global_avg:.4f})" |
|
self.deque = deque(maxlen=window_size) |
|
self.total = 0.0 |
|
self.count = 0 |
|
self.fmt = fmt |
|
|
|
def update(self, value, n=1): |
|
self.deque.append(value) |
|
self.count += n |
|
self.total += value * n |
|
|
|
def synchronize_between_processes(self): |
|
""" |
|
Warning: does not synchronize the deque! |
|
""" |
|
if not is_dist_avail_and_initialized(): |
|
return |
|
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
dist.barrier() |
|
dist.all_reduce(t) |
|
t = t.tolist() |
|
self.count = int(t[0]) |
|
self.total = t[1] |
|
|
|
@property |
|
def median(self): |
|
d = torch.tensor(list(self.deque)) |
|
return d.median().item() |
|
|
|
@property |
|
def avg(self): |
|
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
return d.mean().item() |
|
|
|
@property |
|
def global_avg(self): |
|
return self.total / self.count |
|
|
|
@property |
|
def max(self): |
|
return max(self.deque) |
|
|
|
@property |
|
def value(self): |
|
return self.deque[-1] |
|
|
|
def __str__(self): |
|
return self.fmt.format( |
|
median=self.median, |
|
avg=self.avg, |
|
global_avg=self.global_avg, |
|
max=self.max, |
|
value=self.value) |
|
|
|
|
|
class MetricLogger(object): |
|
def __init__(self, delimiter="\t"): |
|
self.meters = defaultdict(SmoothedValue) |
|
self.delimiter = delimiter |
|
|
|
def update(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
def update2(self, kwargs): |
|
for k, v in kwargs.items(): |
|
if v is None: |
|
continue |
|
if isinstance(v, torch.Tensor): |
|
v = v.item() |
|
assert isinstance(v, (float, int)) |
|
self.meters[k].update(v) |
|
|
|
|
|
def __getattr__(self, attr): |
|
if attr in self.meters: |
|
return self.meters[attr] |
|
if attr in self.__dict__: |
|
return self.__dict__[attr] |
|
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
type(self).__name__, attr)) |
|
|
|
def __str__(self): |
|
loss_str = [] |
|
for name, meter in self.meters.items(): |
|
loss_str.append( |
|
"{}: {}".format(name, str(meter)) |
|
) |
|
return self.delimiter.join(loss_str) |
|
|
|
def synchronize_between_processes(self): |
|
for meter in self.meters.values(): |
|
meter.synchronize_between_processes() |
|
|
|
def add_meter(self, name, meter): |
|
self.meters[name] = meter |
|
|
|
def log_every(self, iterable, print_freq, header=None): |
|
i = 0 |
|
if not header: |
|
header = '' |
|
start_time = time.time() |
|
end = time.time() |
|
iter_time = SmoothedValue(fmt='{avg:.2f}') |
|
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
log_msg = [ |
|
header, |
|
'[{0' + space_fmt + '}/{1}]', |
|
'eta: {eta}', |
|
'{meters}', |
|
'time: {time}', |
|
'data: {data}' |
|
] |
|
if torch.cuda.is_available(): |
|
log_msg.append('max mem: {memory:.0f}') |
|
log_msg = self.delimiter.join(log_msg) |
|
MB = 1024.0 * 1024.0 |
|
for obj in iterable: |
|
data_time.update(time.time() - end) |
|
yield obj |
|
iter_time.update(time.time() - end) |
|
if i % print_freq == 0 or i == len(iterable) - 1: |
|
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
if torch.cuda.is_available(): |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time), |
|
memory=torch.cuda.max_memory_allocated() / MB)) |
|
else: |
|
print(log_msg.format( |
|
i, len(iterable), eta=eta_string, |
|
meters=str(self), |
|
time=str(iter_time), data=str(data_time))) |
|
i += 1 |
|
end = time.time() |
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print('{} Total time: {} ({:.6f} s / it)'.format( |
|
header, total_time_str, total_time / len(iterable))) |
|
|
|
|
|
|
|
|
|
|
|
def seed_worker(worker_id): |
|
worker_seed = torch.initial_seed() % 2**32 |
|
np.random.seed(worker_seed) |
|
random.seed(worker_seed) |
|
|
|
def _load_checkpoint_for_ema(model_ema, checkpoint): |
|
""" |
|
Workaround for ModelEma._load_checkpoint to accept an already-loaded object |
|
""" |
|
mem_file = io.BytesIO() |
|
torch.save(checkpoint, mem_file) |
|
mem_file.seek(0) |
|
model_ema._load_checkpoint(mem_file) |
|
|
|
|
|
def setup_for_distributed(is_master): |
|
""" |
|
This function disables printing when not in master process |
|
""" |
|
import builtins as __builtin__ |
|
builtin_print = __builtin__.print |
|
|
|
def print(*args, **kwargs): |
|
force = kwargs.pop('force', False) |
|
if is_master or force: |
|
builtin_print(*args, **kwargs) |
|
|
|
__builtin__.print = print |
|
|
|
|
|
def is_dist_avail_and_initialized(): |
|
if not dist.is_available(): |
|
return False |
|
if not dist.is_initialized(): |
|
return False |
|
return True |
|
|
|
|
|
def get_world_size(): |
|
if not is_dist_avail_and_initialized(): |
|
return 1 |
|
return dist.get_world_size() |
|
|
|
|
|
def get_rank(): |
|
if not is_dist_avail_and_initialized(): |
|
return 0 |
|
return dist.get_rank() |
|
|
|
|
|
def is_main_process(): |
|
return get_rank() == 0 |
|
|
|
|
|
def save_on_master(*args, **kwargs): |
|
if is_main_process(): |
|
torch.save(*args, **kwargs) |
|
|
|
|
|
def init_distributed_mode(args): |
|
args.distributed = True |
|
args.rank = int(os.environ["RANK"]) |
|
args.gpu = int(os.environ['LOCAL_RANK']) |
|
args.world_size = int(os.environ['WORLD_SIZE']) |
|
args.dist_backend = 'nccl' |
|
torch.distributed.init_process_group( |
|
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank |
|
) |
|
torch.distributed.barrier() |
|
setup_for_distributed(args.rank == 0) |
|
|
|
|
|
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): |
|
missing_keys = [] |
|
unexpected_keys = [] |
|
error_msgs = [] |
|
metadata = getattr(state_dict, '_metadata', None) |
|
state_dict = state_dict.copy() |
|
if metadata is not None: |
|
state_dict._metadata = metadata |
|
|
|
def load(module, prefix=''): |
|
local_metadata = {} if metadata is None else metadata.get( |
|
prefix[:-1], {}) |
|
module._load_from_state_dict( |
|
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) |
|
for name, child in module._modules.items(): |
|
if child is not None: |
|
load(child, prefix + name + '.') |
|
|
|
load(model, prefix=prefix) |
|
|
|
warn_missing_keys = [] |
|
ignore_missing_keys = [] |
|
for key in missing_keys: |
|
keep_flag = True |
|
for ignore_key in ignore_missing.split('|'): |
|
if ignore_key in key: |
|
keep_flag = False |
|
break |
|
if keep_flag: |
|
warn_missing_keys.append(key) |
|
else: |
|
ignore_missing_keys.append(key) |
|
|
|
missing_keys = warn_missing_keys |
|
|
|
if len(missing_keys) > 0: |
|
print("Weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, missing_keys)) |
|
if len(unexpected_keys) > 0: |
|
print("Weights from pretrained model not used in {}: {}".format( |
|
model.__class__.__name__, unexpected_keys)) |
|
if len(ignore_missing_keys) > 0: |
|
print("Ignored weights of {} not initialized from pretrained model: {}".format( |
|
model.__class__.__name__, ignore_missing_keys)) |
|
if len(error_msgs) > 0: |
|
print('\n'.join(error_msgs)) |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self): |
|
self._scaler = torch.cuda.amp.GradScaler() |
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
|
|
if update_grad: |
|
if clip_grad is not None: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters) |
|
self._scaler.step(optimizer) |
|
self._scaler.update() |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.) |
|
device = parameters[0].grad.device |
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
|
return total_norm |
|
|
|
|
|
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, |
|
start_warmup_value=0, warmup_steps=-1): |
|
warmup_schedule = np.array([]) |
|
warmup_iters = warmup_epochs * niter_per_ep |
|
if warmup_steps > 0: |
|
warmup_iters = warmup_steps |
|
if warmup_epochs > 0: |
|
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) |
|
|
|
iters = np.arange(epochs * niter_per_ep - warmup_iters) |
|
iter_per_len = iters/len(iters) |
|
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iter_per_len)) |
|
|
|
|
|
|
|
schedule = np.concatenate((warmup_schedule, schedule)) |
|
|
|
assert len(schedule) == epochs * niter_per_ep |
|
return schedule |
|
|
|
|
|
def get_model_num_parameters(model): |
|
|
|
num_parameters = sum([v.numel() for v in model.parameters() if v.requires_grad]) |
|
|
|
human_readable_fn = lambda num: \ |
|
f'{num / 1e9:.3f} B' if num >= 1e9 else f'{num / 1e6:.3f} M' \ |
|
if num >= 1e6 else f'{num / 1e3:.3f} K' if num >= 1e3 else str(num) |
|
num_parameters_str = human_readable_fn(num_parameters) |
|
|
|
return num_parameters, num_parameters_str |
|
|
|
def save_model(args, epoch, model, optimizer, loss_scaler, model_ema=None): |
|
output_dir = Path(args.output_dir) |
|
epoch_name = str(epoch) |
|
if loss_scaler is not None: |
|
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] |
|
for checkpoint_path in checkpoint_paths: |
|
to_save = { |
|
'model': model.module.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'epoch': epoch, |
|
'scaler': loss_scaler.state_dict(), |
|
'args': args, |
|
} |
|
|
|
if model_ema is not None: |
|
to_save['model_ema'] = get_state_dict(model_ema) |
|
|
|
save_on_master(to_save, checkpoint_path) |
|
else: |
|
client_state = {'epoch': epoch} |
|
if model_ema is not None: |
|
client_state['model_ema'] = get_state_dict(model_ema) |
|
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) |
|
|
|
|
|
def auto_load_model(args, model, optimizer, loss_scaler, model_ema=None, global_rank=None): |
|
output_dir = Path(args.output_dir) |
|
if loss_scaler is not None: |
|
|
|
if len(args.resume) == 0: |
|
import glob |
|
if global_rank is None: |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) |
|
else: |
|
all_checkpoints = glob.glob(os.path.join(output_dir, f'checkpoint-*-rank-{global_rank}.pth')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
if global_rank is None: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
else: |
|
t = ckpt.split('checkpoint-')[1].split('-')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
if global_rank is None: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) |
|
else: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d-rank-%d.pth' % (latest_ckpt, global_rank)) |
|
if args.resume: |
|
print("Auto resume checkpoint: %s" % args.resume) |
|
|
|
if args.resume: |
|
if args.resume.startswith('https'): |
|
checkpoint = torch.hub.load_state_dict_from_url( |
|
args.resume, map_location='cpu', check_hash=True) |
|
else: |
|
checkpoint = torch.load(args.resume, map_location='cpu') |
|
model.module.load_state_dict(checkpoint['model']) |
|
print("Resume checkpoint %s" % args.resume) |
|
if 'optimizer' in checkpoint and 'epoch' in checkpoint: |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
args.start_epoch = checkpoint['epoch'] + 1 |
|
if hasattr(args, 'model_ema') and args.model_ema: |
|
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) |
|
if 'scaler' in checkpoint: |
|
loss_scaler.load_state_dict(checkpoint['scaler']) |
|
|
|
else: |
|
|
|
import glob |
|
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) |
|
latest_ckpt = -1 |
|
for ckpt in all_checkpoints: |
|
t = ckpt.split('-')[-1].split('.')[0] |
|
if t.isdigit(): |
|
latest_ckpt = max(int(t), latest_ckpt) |
|
if latest_ckpt >= 0: |
|
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) |
|
print("Auto resume checkpoint: %d" % latest_ckpt) |
|
_, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) |
|
args.start_epoch = client_states['epoch'] + 1 |
|
if model_ema is not None: |
|
if args.model_ema: |
|
_load_checkpoint_for_ema(model_ema, client_states['model_ema']) |
|
|
|
def unpatchify(x, patch_size): |
|
""" |
|
x: (N, L, patch_size**2*3) |
|
imgs: (N, 3, H, W) |
|
""" |
|
p = patch_size |
|
h = w = int(x.shape[1] ** .5) |
|
assert h * w == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3)) |
|
x = torch.einsum('nhwpqc->nchpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p)) |
|
return imgs |
|
|
|
def unpatchify_cwm(x, patch_size, mask=None): |
|
""" |
|
x: (N, L, patch_size**2 *3) |
|
imgs: (N, 3, H, W) |
|
""" |
|
if mask is not None: |
|
h = w = int(mask.shape[1] ** .5) |
|
recon = torch.zeros(x.shape[0], h*w, x.shape[-1]).to(x) |
|
recon[mask] = x.flatten(0, 1) |
|
else: |
|
h = w = int(x.shape[1] ** .5) |
|
recon = x |
|
|
|
p = patch_size |
|
assert h * w == recon.shape[1] |
|
|
|
recon = recon.reshape(shape=(recon.shape[0], h, w, p, p, 3)) |
|
recon = torch.einsum('nhwpqc->nchpwq', recon) |
|
imgs = recon.reshape(shape=(recon.shape[0], 3, h * p, h * p)) |
|
return imgs |
|
|
|
|
|
def sample_embedding(embedding, pos, mode='bilinear'): |
|
""" |
|
Sample embedding tensor at specified positions |
|
embedding: [B, H, W, C] |
|
pos: [B, P, 2] (convention: first dim is row, second dim is column) |
|
""" |
|
embedding = embedding.permute(0, 3, 1, 2) |
|
device = embedding.device |
|
|
|
pos = pos.flip(dims=(-1,)) |
|
assert pos.min() >= -1 and pos.max() <= 1, "grid sampling expect to be in range [-1, 1]" |
|
|
|
return F.grid_sample(embedding, pos[:, None].to(device), mode=mode).squeeze(-2).permute(0, 2, 1) |
|
|
|
|
|
def sample_positions_from_dist(size, dist): |
|
""" |
|
Samples positions from a given unnormalized probability distribution. |
|
|
|
Parameters: |
|
num (int): The number of samples to draw for each distribution in the batch. |
|
dist (torch.Tensor): A float tensor of shape [B, H, W] representing the unnormalized |
|
probability distributions for B batches each of length N. |
|
|
|
Returns: |
|
torch.Tensor: A tensor of shape [B, num] containing the sampled positions. |
|
""" |
|
assert dist.dim() == 3, "dist should be a 3D tensor with shape [B, H, W]." |
|
assert len(size) == 2, "size should be a 2D tuple (batch_size, num_samples)" |
|
B, H, W = dist.shape |
|
|
|
new_B, num_samples = size |
|
|
|
if dist.min() < 0: |
|
dist -= dist.min() |
|
|
|
|
|
flattened_dist = dist.view(B, -1) |
|
|
|
|
|
sampled_indices = torch.multinomial(flattened_dist, new_B * num_samples, replacement=True) |
|
|
|
|
|
sampled_row_indices = sampled_indices // W |
|
sampled_col_indices = sampled_indices % W |
|
|
|
|
|
samples = torch.stack((sampled_row_indices, sampled_col_indices), dim=-1) |
|
samples = samples.view(new_B, num_samples, 2) |
|
|
|
return samples |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def interpolate_pos_encoding(pos_embed, n_frames, h, w): |
|
N = pos_embed.shape[1] |
|
if N == (h * w * n_frames): |
|
return pos_embed |
|
old_h = old_w = int((N / n_frames) ** 0.5) |
|
patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2) |
|
|
|
patch_pos_embed = F.interpolate( |
|
patch_pos_embed, |
|
size=(h, w), |
|
mode='bicubic', |
|
) |
|
return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0) |
|
|
|
|
|
def flow_to_rgb(vec, flow_mag_range=None, white_bg=False): |
|
height, width = vec.shape[:2] |
|
scaling = 50. / (height**2 + width**2)**0.5 |
|
direction = (np.arctan2(vec[..., 0], vec[..., 1]) + np.pi) / (2 * np.pi) |
|
norm = np.linalg.norm(vec, axis=-1) |
|
if flow_mag_range is None: |
|
flow_mag_range = norm.min(), norm.max() |
|
magnitude = np.clip((norm - flow_mag_range[0]) * scaling, 0., 1.) |
|
if white_bg == True: |
|
value = np.ones_like(direction) |
|
hsv = np.stack([direction, magnitude, saturation], axis=-1) |
|
else: |
|
saturation = np.ones_like(direction) |
|
hsv = np.stack([direction, saturation , magnitude], axis=-1) |
|
rgb = matplotlib.colors.hsv_to_rgb(hsv) |
|
return rgb |