Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -41,11 +41,11 @@ gatconv_model = ModeratelySimplifiedGATConvModel(
|
|
41 |
gatconv_model.load_state_dict(corrected_state_dict)
|
42 |
|
43 |
# Load the BERT-based sentence transformer model
|
44 |
-
model_bert
|
45 |
|
46 |
# Ensure the DataFrame is loaded properly
|
47 |
try:
|
48 |
-
df
|
49 |
except Exception as e:
|
50 |
print(f"Error reading JSON file: {e}")
|
51 |
|
@@ -69,53 +69,46 @@ def get_similar_and_recommend(input_text):
|
|
69 |
def recommend_top_10(given_video_index, all_video_embeddings):
|
70 |
dot_products = [
|
71 |
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
|
72 |
-
for i in range
|
73 |
]
|
74 |
dot_products[given_video_index] = -float("inf") # Exclude the most similar video
|
75 |
|
76 |
-
top_10_indices = np.argsort(dot_products)[::-1][:10]
|
77 |
return [df.iloc[idx].to_dict() for idx in top_10_indices]
|
78 |
|
79 |
top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings)
|
80 |
|
81 |
-
# Apply search context to
|
82 |
user_keywords = input_text.split() # Create a list of keywords from user input
|
83 |
-
|
|
|
84 |
|
85 |
for keyword in user_keywords:
|
86 |
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
|
87 |
-
weight += 0.1 # Increase weight for
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
{key: value for key, value in video.items() if key != "embeddings"} # Exclude embeddings
|
92 |
-
for video in top_10_recommended_videos_features
|
93 |
-
]
|
94 |
|
95 |
-
#
|
96 |
-
final_recommendations.sort(
|
97 |
-
key=lambda video: weight * dot_products[top_10_indices.index(video)], reverse=True
|
98 |
-
)
|
99 |
-
|
100 |
-
# Create the output JSON with the most similar video and final recommendations
|
101 |
output = {
|
102 |
"search_context": {
|
103 |
"input_text": input_text, # What the user provided
|
104 |
-
"
|
105 |
},
|
106 |
"most_similar_video": most_similar_video_features,
|
107 |
-
"final_recommendations":
|
108 |
}
|
109 |
|
110 |
return output
|
111 |
|
112 |
-
# Update the Gradio interface to output JSON with
|
113 |
interface = gr.Interface(
|
114 |
fn=get_similar_and_recommend,
|
115 |
inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
|
116 |
outputs=gr.JSON(),
|
117 |
title="Video Recommendation System with GNN-based Recommendations",
|
118 |
-
description="Enter text to find the most similar video and get top 10 recommended videos with
|
119 |
)
|
120 |
|
121 |
interface.launch()
|
|
|
41 |
gatconv_model.load_state_dict(corrected_state_dict)
|
42 |
|
43 |
# Load the BERT-based sentence transformer model
|
44 |
+
model_bert = SentenceTransformer("all-mpnet-base-v2")
|
45 |
|
46 |
# Ensure the DataFrame is loaded properly
|
47 |
try:
|
48 |
+
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
|
49 |
except Exception as e:
|
50 |
print(f"Error reading JSON file: {e}")
|
51 |
|
|
|
69 |
def recommend_top_10(given_video_index, all_video_embeddings):
|
70 |
dot_products = [
|
71 |
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
|
72 |
+
for i in range all_video_embeddings.shape[0]
|
73 |
]
|
74 |
dot_products[given_video_index] = -float("inf") # Exclude the most similar video
|
75 |
|
76 |
+
top_10_indices = np.argsort(dot_products)[[::-1][:10]
|
77 |
return [df.iloc[idx].to_dict() for idx in top_10_indices]
|
78 |
|
79 |
top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings)
|
80 |
|
81 |
+
# Apply search context to determine weights for GNN results
|
82 |
user_keywords = input_text.split() # Create a list of keywords from user input
|
83 |
+
video_weights = []
|
84 |
+
weight = 1.0 # Initial weight factor
|
85 |
|
86 |
for keyword in user_keywords:
|
87 |
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
|
88 |
+
weight += 0.1 # Increase weight for matching keyword
|
89 |
|
90 |
+
# Calculate the weight for each GNN output
|
91 |
+
video_weights = [weight] * len(top_10_recommended_videos_features)
|
|
|
|
|
|
|
92 |
|
93 |
+
# Create the output JSON with the most similar video, final recommendations, and weights
|
|
|
|
|
|
|
|
|
|
|
94 |
output = {
|
95 |
"search_context": {
|
96 |
"input_text": input_text, # What the user provided
|
97 |
+
"weights": video_weights, # Weights for each GNN-based recommendation
|
98 |
},
|
99 |
"most_similar_video": most_similar_video_features,
|
100 |
+
"final_recommendations": top_10_recommended_videos_features, # Top 10 recommendations
|
101 |
}
|
102 |
|
103 |
return output
|
104 |
|
105 |
+
# Update the Gradio interface to output JSON with detailed context
|
106 |
interface = gr.Interface(
|
107 |
fn=get_similar_and_recommend,
|
108 |
inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
|
109 |
outputs=gr.JSON(),
|
110 |
title="Video Recommendation System with GNN-based Recommendations",
|
111 |
+
description="Enter text to find the most similar video and get top 10 recommended videos with individual weights for each recommendation.",
|
112 |
)
|
113 |
|
114 |
interface.launch()
|