NimaKL commited on
Commit
c0032bb
·
verified ·
1 Parent(s): 8aaf909

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -41
app.py CHANGED
@@ -1,30 +1,13 @@
1
- from fastapi import FastAPI, HTTPException
2
- from pydantic import BaseModel
3
  import torch
4
  import pandas as pd
5
  import numpy as np
6
- from sentence_transformers import SentenceTransformer
7
  from torch_geometric.data import Data
8
  from torch_geometric.nn import GATConv
 
9
  from sklearn.metrics.pairwise import cosine_similarity
10
 
11
- # FastAPI App
12
- app = FastAPI()
13
-
14
- # Data and Model Initialization
15
- data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
16
-
17
- # Corrected state dictionary for GATConv model
18
- original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
19
- corrected_state_dict = {}
20
- for key, value in original_state_dict.items():
21
- if "lin.weight" in key:
22
- corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
23
- corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
24
- else:
25
- corrected_state_dict[key] = value
26
-
27
- # Define GATConv Model
28
  class ModeratelySimplifiedGATConvModel(torch.nn.Module):
29
  def __init__(self, in_channels, hidden_channels, out_channels):
30
  super().__init__()
@@ -39,19 +22,38 @@ class ModeratelySimplifiedGATConvModel(torch.nn.Module):
39
  x = self.conv2(x, edge_index, edge_attr)
40
  return x
41
 
42
- # Initialize GATConv model and BERT-based sentence transformer model
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  gatconv_model = ModeratelySimplifiedGATConvModel(
44
  in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
45
  )
46
  gatconv_model.load_state_dict(corrected_state_dict)
47
 
 
48
  model_bert = SentenceTransformer("all-mpnet-base-v2")
49
 
50
- # Ensure DataFrame is loaded properly
51
  df = pd.read_feather("EmbeddedCombined.feather")
52
 
53
- # Function to get most similar video and recommend top 10 based on GNN embeddings
 
 
 
 
54
  def get_similar_and_recommend(input_text):
 
55
  embeddings_matrix = np.array(df["embeddings"].tolist())
56
  input_embedding = model_bert.encode([input_text])[0]
57
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
@@ -63,7 +65,7 @@ def get_similar_and_recommend(input_text):
63
  "similarity_score": similarities[most_similar_index],
64
  }
65
 
66
- # Function to recommend top 10 videos based on GNN embeddings
67
  def recommend_next_10_videos(given_video_index, all_video_embeddings):
68
  dot_products = [
69
  torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
@@ -76,23 +78,29 @@ def get_similar_and_recommend(input_text):
76
  return recommendations
77
 
78
  top_10_recommendations = recommend_next_10_videos(
79
- most_similar_index, gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
80
  )
81
 
82
- return {
83
- "most_similar_video_title": most_similar_video["title"],
84
- "top_10_recommendations": top_10_recommendations,
85
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
- # Define the endpoint for FastAPI to get video title and recommendations
88
- class UserInput(BaseModel):
89
- text: str # The string input from the user
90
-
91
- @app.post("/recommendations")
92
- def recommend_videos(user_input: UserInput):
93
- if not user_input.text:
94
- raise HTTPException(status_code=400, detail="Input text cannot be empty.")
95
-
96
- result = get_similar_and_recommend(user_input.text)
97
-
98
- return result
 
1
+ import gradio as gr
 
2
  import torch
3
  import pandas as pd
4
  import numpy as np
 
5
  from torch_geometric.data import Data
6
  from torch_geometric.nn import GATConv
7
+ from sentence_transformers import SentenceTransformer
8
  from sklearn.metrics.pairwise import cosine_similarity
9
 
10
+ # Define the GATConv model architecture
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  class ModeratelySimplifiedGATConvModel(torch.nn.Module):
12
  def __init__(self, in_channels, hidden_channels, out_channels):
13
  super().__init__()
 
22
  x = self.conv2(x, edge_index, edge_attr)
23
  return x
24
 
25
+ # Load the dataset and the GATConv model
26
+ data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
27
+
28
+ # Correct the state dictionary's key names
29
+ original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
30
+ corrected_state_dict = {}
31
+ for key, value in original_state_dict.items():
32
+ if "lin.weight" in key:
33
+ corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
34
+ corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
35
+ else:
36
+ corrected_state_dict[key] = value
37
+
38
+ # Initialize the GATConv model with the corrected state dictionary
39
  gatconv_model = ModeratelySimplifiedGATConvModel(
40
  in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
41
  )
42
  gatconv_model.load_state_dict(corrected_state_dict)
43
 
44
+ # Load the BERT-based sentence transformer model
45
  model_bert = SentenceTransformer("all-mpnet-base-v2")
46
 
47
+ # Ensure the DataFrame is loaded properly
48
  df = pd.read_feather("EmbeddedCombined.feather")
49
 
50
+ # Generate GNN-based embeddings
51
+ with torch.no_grad():
52
+ all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
53
+
54
+ # Function to find the most similar video and recommend the top 10 based on GNN embeddings
55
  def get_similar_and_recommend(input_text):
56
+ # Find the most similar video based on input text
57
  embeddings_matrix = np.array(df["embeddings"].tolist())
58
  input_embedding = model_bert.encode([input_text])[0]
59
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
 
65
  "similarity_score": similarities[most_similar_index],
66
  }
67
 
68
+ # Recommend the top 10 videos based on GNN embeddings and dot product
69
  def recommend_next_10_videos(given_video_index, all_video_embeddings):
70
  dot_products = [
71
  torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
 
78
  return recommendations
79
 
80
  top_10_recommendations = recommend_next_10_videos(
81
+ most_similar_index, all_video_embeddings
82
  )
83
 
84
+ return (
85
+ most_similar_video["title"],
86
+ most_similar_video["description"],
87
+ most_similar_video["similarity_score"],
88
+ top_10_recommendations,
89
+ )
90
+
91
+ # Update the Gradio interface to fix the output type
92
+ interface = gr.Interface(
93
+ fn=get_similar_and_recommend,
94
+ inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
95
+ outputs=[
96
+ gr.components.Textbox(label="Video Title"),
97
+ gr.components.Textbox(label="Video Description"),
98
+ gr.components.Textbox(label="Similarity Score"),
99
+ gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
100
+ ],
101
+ title="Video Recommendation System with GNN-based Recommendations",
102
+ description="Enter text to find the most similar video and get the top 10 recommended videos based on dot product and GNN embeddings.",
103
+ )
104
 
105
+ # Launch the Gradio interface
106
+ interface.launch()