Interviewer / app.py
rohitashva's picture
Update app.py
709add7 verified
import os
hf_token = os.getenv("Gem") # Store API token in .env
import streamlit as st
import os
import logging
import dotenv
import yaml
import PyPDF2
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import random
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
dotenv.load_dotenv()
# Load configuration from YAML
def load_config():
with open("config.yaml", "r") as f:
return yaml.safe_load(f)
config = load_config()
logging.basicConfig(level=logging.INFO)
# Load embedding model
embeddings_model = HuggingFaceEmbeddings(model_name=config["embedding_model"])
# Extract text from PDFs
def extract_text_from_pdf(file):
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() or ""
return text.strip()
# Function to calculate matching score between job description and resume
def calculate_matching_score(jd_text, resume_text):
vectorizer = TfidfVectorizer().fit_transform([jd_text, resume_text])
score = cosine_similarity(vectorizer[0], vectorizer[1])[0][0] * 100
return round(score, 2)
# Function to generate final score based on user responses
def calculate_final_score(responses):
total_questions = len(responses)
correct_responses = sum(1 for response in responses if "good" in response.lower() or "correct" in response.lower())
return round((correct_responses / total_questions) * 100, 2) if total_questions > 0 else 0
# Get interview questions and assess responses
def get_interview_response(jd_text, resume_text, candidate_response=None, round_stage="intro", question_count=0):
technical_names = ["Alex", "Jordan", "Casey", "Morgan"]
hr_names = ["Taylor", "Jamie", "Riley", "Sam"]
if round_stage in ["technical", "coding"]:
interviewer_name = random.choice(technical_names)
role = "Technical Lead"
else:
interviewer_name = random.choice(hr_names)
role = "HR Manager"
prompt_template = f"""
My name is {interviewer_name}, and I am your {role} for this round.
JOB DESCRIPTION:
{jd_text}
CANDIDATE PROFILE:
{resume_text}
This is question {question_count+1} of 5.
"""
if question_count >= 5:
return f"{interviewer_name}: This round is complete. Moving to the next stage."
if round_stage == "intro":
prompt_template += f"{interviewer_name}: Let's start with an introduction. Tell me about yourself."
elif round_stage == "technical":
prompt_template += f"{interviewer_name}: Based on your resume and the job description, here is a technical question for you."
elif round_stage == "coding":
prompt_template += f"{interviewer_name}: Let's move to a coding problem relevant to your role."
elif round_stage == "hr":
prompt_template += f"{interviewer_name}: Now let's discuss some HR aspects, starting with your motivation for this role."
elif round_stage == "final_feedback":
prompt_template += "Summarize the candidate’s performance in both rounds in a structured format."
if candidate_response:
if candidate_response.lower() == "hint":
prompt_template += f"{interviewer_name}: Here is a helpful hint."
else:
prompt_template += f"The candidate answered: {candidate_response}. Assess the response and move to the next question."
llm = HuggingFaceHub(
repo_id=config["model_name"],
model_kwargs={"temperature": config["temperature"], "max_length": 200},
huggingfacehub_api_token=hf_token
)
response = llm(prompt_template).strip()
# Store the full assessment in a text file for admin review
with open("candidate_assessment.txt", "a") as f:
f.write(f"Round: {round_stage}, Question {question_count+1}\n")
f.write(f"Interviewer: {interviewer_name} ({role})\n")
f.write(f"Question: {prompt_template}\n")
f.write(f"Candidate Response: {candidate_response}\n")
f.write(f"Feedback: {response}\n\n")
return response if round_stage != "final_feedback" else f"{interviewer_name}: The interview is now complete."
# Streamlit UI
st.set_page_config(page_title="AI Interviewer", layout="centered")
st.title("🤖 AI Interview Chatbot")
st.write("Upload a Job Description and Resume to start the interview.")
jd_file = st.file_uploader("Upload Job Description (PDF)", type=["pdf"])
resume_file = st.file_uploader("Upload Candidate Resume (PDF)", type=["pdf"])
if jd_file and resume_file:
jd_text = extract_text_from_pdf(jd_file)
resume_text = extract_text_from_pdf(resume_file)
# Calculate matching score
matching_score = calculate_matching_score(jd_text, resume_text)
# Store interview history & matching score
if "interview_history" not in st.session_state:
st.session_state["interview_history"] = []
st.session_state["responses"] = []
first_question = get_interview_response(jd_text, resume_text)
st.session_state["interview_history"].append(("AI", first_question))
st.write(f"**Matching Score:** {matching_score}%")
for role, msg in st.session_state["interview_history"]:
st.chat_message(role).write(msg)
query = st.chat_input("Your Response:")
if query:
response = get_interview_response(jd_text, resume_text, query)
st.session_state["interview_history"].append(("You", query))
st.session_state["interview_history"].append(("AI", response))
st.session_state["responses"].append(response) # Store responses for final score
st.rerun()
# Generate final score and store the results for download
if "responses" in st.session_state and len(st.session_state["responses"]) >= 5:
final_score = calculate_final_score(st.session_state["responses"])
# Store all results in a text file
file_path = "candidate_assessment.txt"
with open(file_path, "w") as f:
f.write(f"Matching Score: {matching_score}%\n")
f.write(f"Final Score: {final_score}%\n\n")
f.write("Interview Assessment:\n")
for role, msg in st.session_state["interview_history"]:
f.write(f"{role}: {msg}\n")
# Provide file download option
with open(file_path, "rb") as f:
st.download_button("Download Assessment", f, file_name="candidate_assessment.txt")