Spaces:
Sleeping
Sleeping
import os | |
hf_token = os.getenv("Gem") # Store API token in .env | |
import streamlit as st | |
import os | |
import logging | |
import dotenv | |
import yaml | |
import PyPDF2 | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.llms import HuggingFaceHub | |
import random | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
dotenv.load_dotenv() | |
# Load configuration from YAML | |
def load_config(): | |
with open("config.yaml", "r") as f: | |
return yaml.safe_load(f) | |
config = load_config() | |
logging.basicConfig(level=logging.INFO) | |
# Load embedding model | |
embeddings_model = HuggingFaceEmbeddings(model_name=config["embedding_model"]) | |
# Extract text from PDFs | |
def extract_text_from_pdf(file): | |
reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() or "" | |
return text.strip() | |
# Function to calculate matching score between job description and resume | |
def calculate_matching_score(jd_text, resume_text): | |
vectorizer = TfidfVectorizer().fit_transform([jd_text, resume_text]) | |
score = cosine_similarity(vectorizer[0], vectorizer[1])[0][0] * 100 | |
return round(score, 2) | |
# Function to generate final score based on user responses | |
def calculate_final_score(responses): | |
total_questions = len(responses) | |
correct_responses = sum(1 for response in responses if "good" in response.lower() or "correct" in response.lower()) | |
return round((correct_responses / total_questions) * 100, 2) if total_questions > 0 else 0 | |
# Get interview questions and assess responses | |
def get_interview_response(jd_text, resume_text, candidate_response=None, round_stage="intro", question_count=0): | |
technical_names = ["Alex", "Jordan", "Casey", "Morgan"] | |
hr_names = ["Taylor", "Jamie", "Riley", "Sam"] | |
if round_stage in ["technical", "coding"]: | |
interviewer_name = random.choice(technical_names) | |
role = "Technical Lead" | |
else: | |
interviewer_name = random.choice(hr_names) | |
role = "HR Manager" | |
prompt_template = f""" | |
My name is {interviewer_name}, and I am your {role} for this round. | |
JOB DESCRIPTION: | |
{jd_text} | |
CANDIDATE PROFILE: | |
{resume_text} | |
This is question {question_count+1} of 5. | |
""" | |
if question_count >= 5: | |
return f"{interviewer_name}: This round is complete. Moving to the next stage." | |
if round_stage == "intro": | |
prompt_template += f"{interviewer_name}: Let's start with an introduction. Tell me about yourself." | |
elif round_stage == "technical": | |
prompt_template += f"{interviewer_name}: Based on your resume and the job description, here is a technical question for you." | |
elif round_stage == "coding": | |
prompt_template += f"{interviewer_name}: Let's move to a coding problem relevant to your role." | |
elif round_stage == "hr": | |
prompt_template += f"{interviewer_name}: Now let's discuss some HR aspects, starting with your motivation for this role." | |
elif round_stage == "final_feedback": | |
prompt_template += "Summarize the candidate’s performance in both rounds in a structured format." | |
if candidate_response: | |
if candidate_response.lower() == "hint": | |
prompt_template += f"{interviewer_name}: Here is a helpful hint." | |
else: | |
prompt_template += f"The candidate answered: {candidate_response}. Assess the response and move to the next question." | |
llm = HuggingFaceHub( | |
repo_id=config["model_name"], | |
model_kwargs={"temperature": config["temperature"], "max_length": 200}, | |
huggingfacehub_api_token=hf_token | |
) | |
response = llm(prompt_template).strip() | |
# Store the full assessment in a text file for admin review | |
with open("candidate_assessment.txt", "a") as f: | |
f.write(f"Round: {round_stage}, Question {question_count+1}\n") | |
f.write(f"Interviewer: {interviewer_name} ({role})\n") | |
f.write(f"Question: {prompt_template}\n") | |
f.write(f"Candidate Response: {candidate_response}\n") | |
f.write(f"Feedback: {response}\n\n") | |
return response if round_stage != "final_feedback" else f"{interviewer_name}: The interview is now complete." | |
# Streamlit UI | |
st.set_page_config(page_title="AI Interviewer", layout="centered") | |
st.title("🤖 AI Interview Chatbot") | |
st.write("Upload a Job Description and Resume to start the interview.") | |
jd_file = st.file_uploader("Upload Job Description (PDF)", type=["pdf"]) | |
resume_file = st.file_uploader("Upload Candidate Resume (PDF)", type=["pdf"]) | |
if jd_file and resume_file: | |
jd_text = extract_text_from_pdf(jd_file) | |
resume_text = extract_text_from_pdf(resume_file) | |
# Calculate matching score | |
matching_score = calculate_matching_score(jd_text, resume_text) | |
# Store interview history & matching score | |
if "interview_history" not in st.session_state: | |
st.session_state["interview_history"] = [] | |
st.session_state["responses"] = [] | |
first_question = get_interview_response(jd_text, resume_text) | |
st.session_state["interview_history"].append(("AI", first_question)) | |
st.write(f"**Matching Score:** {matching_score}%") | |
for role, msg in st.session_state["interview_history"]: | |
st.chat_message(role).write(msg) | |
query = st.chat_input("Your Response:") | |
if query: | |
response = get_interview_response(jd_text, resume_text, query) | |
st.session_state["interview_history"].append(("You", query)) | |
st.session_state["interview_history"].append(("AI", response)) | |
st.session_state["responses"].append(response) # Store responses for final score | |
st.rerun() | |
# Generate final score and store the results for download | |
if "responses" in st.session_state and len(st.session_state["responses"]) >= 5: | |
final_score = calculate_final_score(st.session_state["responses"]) | |
# Store all results in a text file | |
file_path = "candidate_assessment.txt" | |
with open(file_path, "w") as f: | |
f.write(f"Matching Score: {matching_score}%\n") | |
f.write(f"Final Score: {final_score}%\n\n") | |
f.write("Interview Assessment:\n") | |
for role, msg in st.session_state["interview_history"]: | |
f.write(f"{role}: {msg}\n") | |
# Provide file download option | |
with open(file_path, "rb") as f: | |
st.download_button("Download Assessment", f, file_name="candidate_assessment.txt") |