File size: 1,725 Bytes
5a45411
662b753
5a45411
 
 
662b753
5a45411
d5b1e39
5a45411
 
 
 
 
 
 
d5b1e39
662b753
 
5a45411
662b753
 
 
5a45411
662b753
 
5a45411
662b753
 
5a45411
662b753
 
 
 
5a45411
662b753
5a45411
662b753
 
 
5a45411
662b753
 
 
 
 
d5b1e39
662b753
d5b1e39
662b753
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
import av
import joblib
import mediapipe as mp
import numpy as np
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase

# Load trained model and label encoder
model = joblib.load("pose_classifier.joblib")
label_encoder = joblib.load("label_encoder.joblib")

# Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Streamlit UI
st.title("Live Pose Classification on Hugging Face Spaces")
st.write("Using Streamlit WebRTC, OpenCV, and MediaPipe.")

class PoseClassification(VideoTransformerBase):
    def transform(self, frame):
        img = frame.to_ndarray(format="bgr24")

        # Convert frame to RGB
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        # Process frame with MediaPipe Pose
        results = pose.process(img_rgb)

        if results.pose_landmarks:
            landmarks = results.pose_landmarks.landmark
            pose_data = [j.x for j in landmarks] + [j.y for j in landmarks] + \
                        [j.z for j in landmarks] + [j.visibility for j in landmarks]

            pose_data = np.array(pose_data).reshape(1, -1)

            try:
                y_pred = model.predict(pose_data)
                predicted_label = label_encoder.inverse_transform(y_pred)[0]

                # Draw label on frame
                cv2.putText(img, f"Pose: {predicted_label}", (20, 50),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
            except Exception as e:
                st.warning(f"⚠️ Prediction Error: {e}")

        return av.VideoFrame.from_ndarray(img, format="bgr24")

# Start WebRTC streamer
webrtc_streamer(key="pose-classification", video_transformer_factory=PoseClassification)