Spaces:
Sleeping
Sleeping
import streamlit as st | |
import cv2 | |
import joblib | |
import mediapipe as mp | |
import numpy as np | |
# Load trained model and label encoder | |
model = joblib.load("pose_classifier.joblib") | |
label_encoder = joblib.load("label_encoder.joblib") | |
# Initialize MediaPipe Pose | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose() | |
# Streamlit UI | |
st.title("Live Pose Classification") | |
st.write("Real-time pose detection using OpenCV and MediaPipe.") | |
# OpenCV Video Capture | |
cap = cv2.VideoCapture(0) | |
# Streamlit Image Display | |
frame_placeholder = st.empty() | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
st.warning("Failed to capture video. Check your camera.") | |
break | |
# Convert frame to RGB | |
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Process frame with MediaPipe Pose | |
results = pose.process(img_rgb) | |
if results.pose_landmarks: | |
landmarks = results.pose_landmarks.landmark | |
pose_data = [j.x for j in landmarks] + [j.y for j in landmarks] + \ | |
[j.z for j in landmarks] + [j.visibility for j in landmarks] | |
pose_data = np.array(pose_data).reshape(1, -1) | |
# Predict pose | |
y_pred = model.predict(pose_data) | |
predicted_label = label_encoder.inverse_transform(y_pred)[0] | |
# Display predicted label | |
cv2.putText(frame, f"Pose: {predicted_label}", (20, 50), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) | |
# Display frame in Streamlit | |
frame_placeholder.image(frame, channels="BGR") | |
# Break loop if user stops execution | |
if st.button("Stop Camera"): | |
break | |
cap.release() | |
cv2.destroyAllWindows() |