Spaces:
Sleeping
Sleeping
import fitz # PyMuPDF | |
import google.generativeai as genai | |
import streamlit as st | |
def extract_text_from_pdf(pdf_path): | |
"""Extracts text from a PDF file.""" | |
text = "" | |
try: | |
with fitz.open(pdf_path) as doc: | |
for page in doc: | |
text += page.get_text("text") + "\n" | |
except Exception as e: | |
st.error(f"Error reading PDF: {e}") | |
return text | |
def analyze_health_data(text): | |
"""Analyzes extracted text using Google Generative AI (Free Tier API).""" | |
try: | |
# Get a free API key from Google AI Studio: https://aistudio.google.com/ | |
genai.configure(api_key="AIzaSyAY6ZYxOzVV5N7mBZzDJ96WEPJGfuFx-mU") # Replace with free API key | |
model = genai.GenerativeModel("gemini-pro") # Choose appropriate model | |
response = model.generate_content( | |
f"Analyze this blood report and provide trends, risks, and health suggestions:\n{text}" | |
) | |
return response.text | |
except Exception as e: | |
return f"Error in LLM response: {e}" | |
def main(): | |
st.title("Health Report Analyzer") | |
uploaded_file = st.file_uploader("Upload your health report (PDF)", type=["pdf"]) | |
if uploaded_file is not None: | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
extracted_text = extract_text_from_pdf("temp.pdf") | |
st.subheader("Extracted Report Text:") | |
st.text_area("Extracted Text", extracted_text[:1000], height=200) | |
if st.button("Analyze Report"): | |
with st.spinner("Analyzing..."): | |
analysis = analyze_health_data(extracted_text) | |
st.subheader("Health Analysis:") | |
st.write(analysis) | |
if __name__ == "__main__": | |
main() |