Spaces:
Sleeping
Sleeping
File size: 11,809 Bytes
5aa5050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# Importing necessary libraries
from collections import Counter
import streamlit as st
import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import word_tokenize
import PyPDF2
import pandas as pd
import re
import matplotlib.pyplot as plt
import seaborn as sns
# Downloading the 'punkt' tokenizer from NLTK
nltk.download('punkt')
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
return text
# Function to extract skills from a text using a list of skill keywords
def extract_skills(text, skills_keywords):
skills = [skill.lower()
for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
return skills
# Function to preprocess text by tokenizing and converting to lowercase
def preprocess_text(text):
return word_tokenize(text.lower())
# Function to extract mobile numbers from a text
def extract_mobile_numbers(text):
mobile_pattern = r'\b\d{10}\b|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b'
return re.findall(mobile_pattern, text)
# Function to extract emails from a text
def extract_emails(text):
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
return re.findall(email_pattern, text)
# Function to train a Doc2Vec model on a list of tagged documents
def train_doc2vec_model(documents):
model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
model.build_vocab(documents)
model.train(documents, total_examples=model.corpus_count,
epochs=model.epochs)
return model
# Function to calculate the cosine similarity between two texts using a trained Doc2Vec model
def calculate_similarity(model, text1, text2):
vector1 = model.infer_vector(preprocess_text(text1))
vector2 = model.infer_vector(preprocess_text(text2))
return model.dv.cosine_similarities(vector1, [vector2])[0]
# Function to calculate accuracy based on true positives, false positives, and false negatives
def accuracy_calculation(true_positives, false_positives, false_negatives):
total = true_positives + false_positives + false_negatives
accuracy = true_positives / total if total != 0 else 0
return accuracy
# Function to extract CGPA from a text
def extract_cgpa(resume_text):
# Define a regular expression pattern for CGPA extraction
cgpa_pattern = r'\b(?:CGPA|GPA|C.G.PA|Cumulative GPA)\s*:?[\s-]* ([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s*(?:CGPA|GPA)\b'
# Search for CGPA pattern in the text
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
# Check if a match is found
if match:
cgpa = match.group(1)
if cgpa is not None:
return float(cgpa)
else:
return float(match.group(2))
else:
return None
# Regular expressions for email and phone number patterns
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
phone_pattern = r'\b\d{10}\b|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b'
# Streamlit Frontend
st.markdown("# Resume Matching Tool ππ")
st.markdown("An application to match resumes with a job description.")
# Sidebar - File Upload for Resumes
st.sidebar.markdown("## Upload Resumes PDF")
resumes_files = st.sidebar.file_uploader(
"Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
if resumes_files:
# Sidebar - File Upload for Job Descriptions
st.sidebar.markdown("## Upload Job Description PDF")
job_descriptions_file = st.sidebar.file_uploader(
"Upload Job Description PDF", type=["pdf"])
if job_descriptions_file:
# Sidebar - Sorting Options
sort_options = ['Weighted Score', 'Similarity Score']
selected_sort_option = st.sidebar.selectbox(
"Sort results by", sort_options)
# Backend Processing
job_description_text = extract_text_from_pdf(job_descriptions_file)
resumes_texts = [extract_text_from_pdf(
resume_file) for resume_file in resumes_files]
tagged_resumes = [TaggedDocument(words=preprocess_text(
text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
model_resumes = train_doc2vec_model(tagged_resumes)
true_positives_mobile = 0
false_positives_mobile = 0
false_negatives_mobile = 0
true_positives_email = 0
false_positives_email = 0
false_negatives_email = 0
results_data = {'Resume': [], 'Similarity Score': [],
'Weighted Score': [], 'Email': [], 'Contact': [], 'CGPA': []}
for i, resume_text in enumerate(resumes_texts):
extracted_mobile_numbers = set(extract_mobile_numbers(resume_text))
extracted_emails = set(extract_emails(resume_text))
extracted_cgpa = extract_cgpa(resume_text)
ground_truth_mobile_numbers = {'1234567890', '9876543210'}
ground_truth_emails = {
'[email protected]', '[email protected]'}
true_positives_mobile += len(
extracted_mobile_numbers.intersection(ground_truth_mobile_numbers))
false_positives_mobile += len(
extracted_mobile_numbers.difference(ground_truth_mobile_numbers))
false_negatives_mobile += len(
ground_truth_mobile_numbers.difference(extracted_mobile_numbers))
true_positives_email += len(
extracted_emails.intersection(ground_truth_emails))
false_positives_email += len(
extracted_emails.difference(ground_truth_emails))
false_negatives_email += len(
ground_truth_emails.difference(extracted_emails))
similarity_score = calculate_similarity(
model_resumes, resume_text, job_description_text)
other_criteria_score = 0
weighted_score = (0.6 * similarity_score) + \
(0.4 * other_criteria_score)
results_data['Resume'].append(resumes_files[i].name)
results_data['Similarity Score'].append(similarity_score * 100)
results_data['Weighted Score'].append(weighted_score)
emails = ', '.join(re.findall(email_pattern, resume_text))
contacts = ', '.join(re.findall(phone_pattern, resume_text))
results_data['Email'].append(emails)
results_data['Contact'].append(contacts)
results_data['CGPA'].append(extracted_cgpa)
results_df = pd.DataFrame(results_data)
if selected_sort_option == 'Similarity Score':
results_df = results_df.sort_values(
by='Similarity Score', ascending=False)
else:
results_df = results_df.sort_values(
by='Weighted Score', ascending=False)
st.subheader(f"Results Table (Sorted by {selected_sort_option}):")
# Define a custom function to highlight maximum values in the specified columns
def highlight_max(data, color='grey'):
is_max = data == data.max()
return [f'background-color: {color}' if val else '' for val in is_max]
# Apply the custom highlighting function to the DataFrame
st.dataframe(results_df.style.apply(highlight_max, subset=[
'Similarity Score', 'Weighted Score', 'CGPA']))
highest_score_index = results_df['Similarity Score'].idxmax()
highest_score_resume_name = resumes_files[highest_score_index].name
st.subheader("\nDetails of Highest Similarity Score Resume:")
st.write(f"Resume Name: {highest_score_resume_name}")
st.write(
f"Similarity Score: {results_df.loc[highest_score_index, 'Similarity Score']:.2f}")
if 'Weighted Score' in results_df.columns:
weighted_score_value = results_df.loc[highest_score_index,
'Weighted Score']
st.write(f"Weighted Score: {weighted_score_value:.2f}" if pd.notnull(
weighted_score_value) else "Weighted Score: Not Mentioned")
else:
st.write("Weighted Score: Not Mentioned")
if 'Email' in results_df.columns:
email_value = results_df.loc[highest_score_index, 'Email']
st.write(f"Email: {email_value}" if pd.notnull(
email_value) else "Email: Not Mentioned")
else:
st.write("Email: Not Mentioned")
if 'Contact' in results_df.columns:
contact_value = results_df.loc[highest_score_index, 'Contact']
st.write(f"Contact: {contact_value}" if pd.notnull(
contact_value) else "Contact: Not Mentioned")
else:
st.write("Contact: Not Mentioned")
if 'CGPA' in results_df.columns:
cgpa_value = results_df.loc[highest_score_index, 'CGPA']
st.write(f"CGPA: {cgpa_value}" if pd.notnull(
cgpa_value) else "CGPA: Not Mentioned")
else:
st.write("CGPA: Not Mentioned")
mobile_accuracy = accuracy_calculation(
true_positives_mobile, false_positives_mobile, false_negatives_mobile)
email_accuracy = accuracy_calculation(
true_positives_email, false_positives_email, false_negatives_email)
st.subheader("\nHeatmap:")
# st.write(f"Mobile Number Accuracy: {mobile_accuracy:.2%}")
# st.write(f"Email Accuracy: {email_accuracy:.2%}")
# Get skills keywords from user input
skills_keywords_input = st.text_input(
"Enter skills keywords separated by commas (e.g., python, java, machine learning):")
skills_keywords = [skill.strip()
for skill in skills_keywords_input.split(',') if skill.strip()]
if skills_keywords:
# Calculate the similarity score between each skill keyword and the resume text
skills_similarity_scores = []
for resume_text in resumes_texts:
resume_text_similarity_scores = []
for skill in skills_keywords:
similarity_score = calculate_similarity(
model_resumes, resume_text, skill)
resume_text_similarity_scores.append(similarity_score)
skills_similarity_scores.append(resume_text_similarity_scores)
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs
skills_similarity_df = pd.DataFrame(
skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
# Plot the heatmap
fig, ax = plt.subplots(figsize=(12, 8))
sns.heatmap(skills_similarity_df,
cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
ax.set_title('Heatmap for Skills Similarity')
ax.set_xlabel('Skills')
ax.set_ylabel('Resumes')
# Rotate the y-axis labels for better readability
plt.yticks(rotation=0)
# Display the Matplotlib figure using st.pyplot()
st.pyplot(fig)
else:
st.write("Please enter at least one skill keyword.")
else:
st.warning("Please upload the Job Description PDF to proceed.")
else:
st.warning("Please upload Resumes PDF to proceed.")
|