tts / app.py
ronniet's picture
Update app.py
b84dff6
raw
history blame
787 Bytes
import gradio as gr
# from TTS.api import TTS
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
# def predict(text):
# file_path = "output.wav"
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=file_path)
# return file_path
# demo = gr.Interface(
# fn=predict,
# inputs='text',
# outputs='audio'
# )
# demo.launch()
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")