File size: 10,963 Bytes
41658a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0af67b
 
 
 
 
 
 
 
41658a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0af67b
41658a6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
from fastapi import FastAPI, File, UploadFile, Response, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import io
import requests
import sqlite3
from pydantic import BaseModel, EmailStr
from typing import List, Optional


from pathlib import Path
from model import YOLOModel
import shutil

from openpyxl import Workbook
from openpyxl.drawing.image import Image as ExcelImage
from openpyxl.styles import Alignment
import os 

yolo = YOLOModel()

UPLOAD_FOLDER = Path("./uploads")
UPLOAD_FOLDER.mkdir(exist_ok=True)

app = FastAPI()

cropped_images_dir = "cropped_images"

# Initialize SQLite database
def init_db():
    conn = sqlite3.connect('users.db')
    c = conn.cursor()
    c.execute('''
        CREATE TABLE IF NOT EXISTS users (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            firstName TEXT NOT NULL,
            lastName TEXT NOT NULL,
            country TEXT,
            number TEXT,  -- Phone number stored as TEXT to allow various formats
            email TEXT UNIQUE NOT NULL,  -- Email should be unique and non-null
            password TEXT NOT NULL  -- Password will be stored as a string (hashed ideally)
        )
    ''')
    conn.commit()
    conn.close()

init_db()

class UserSignup(BaseModel):
    firstName: str
    lastName: str
    country: str 
    number: str 
    email: EmailStr
    password: str

class UserLogin(BaseModel):
    email: str
    password: str

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.post("/signup")
async def signup(user_data: UserSignup):
    try:
        conn = sqlite3.connect('users.db')
        c = conn.cursor()
        
        # Check if user already exists
        c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
        if c.fetchone():
            raise HTTPException(status_code=400, detail="Email already registered")
        
        # Insert new user
        c.execute("""
            INSERT INTO users (firstName, lastName, country, number, email, password) 
            VALUES (?, ?, ?, ?, ?, ?)
        """, (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
        
        conn.commit()
        conn.close()
        
        return {"message": "User registered successfully", "email": user_data.email}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/login")
async def login(user_data: UserLogin):
    try:
        conn = sqlite3.connect('users.db')
        c = conn.cursor()
        
        # Find user
        c.execute("SELECT * FROM users WHERE email = ? AND password = ?", 
                  (user_data.email, user_data.password))
        user = c.fetchone()
        
        conn.close()
        
        if not user:
            raise HTTPException(status_code=401, detail="Invalid credentials")
        
        return {
            "message": "Login successful", 
            "user": {
                "firstName": user[1],
                "lastName": user[2],
                "email": user[3]
            }
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))



@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
    # print(f'\n\t\tUPLOADED!!!!')
    try:
        file_path = UPLOAD_FOLDER / image.filename
        with file_path.open("wb") as buffer:
            shutil.copyfileobj(image.file, buffer)
        # print(f'Starting to pass into model, {file_path}')
        # Perform YOLO inference
        predictions = yolo.predict(str(file_path))
        print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
        # Clean up uploaded file
        file_path.unlink()  # Remove file after processing
        return JSONResponse(content={"items": predictions})
    

    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)


@app.get("/download_cropped_image/{image_idx}")
def download_cropped_image(image_idx: int):
    cropped_image_path = cropped_images_dir / f"crop_{image_idx}.jpg"
    if cropped_image_path.exists():
        return FileResponse(cropped_image_path, media_type="image/jpeg")
    return JSONResponse(content={"error": "Cropped image not found"}, status_code=404)


def cleanup_images(directory: str):
    """Remove all images in the directory."""
    for file in Path(directory).glob("*"):
        file.unlink()
'''

@app.post("/generate-excel/")
async def generate_excel(predictions: list):
    # Create an Excel workbook
    workbook = Workbook()
    sheet = workbook.active
    sheet.title = "Predictions"

    # Add headers
    headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
    sheet.append(headers)

    for idx, prediction in enumerate(predictions):
        # Extract details from the prediction
        category = prediction["category"]
        confidence = prediction["confidence"]
        predicted_brand = prediction["predicted_brand"]
        price = prediction["price"]
        details = prediction["details"]
        detected_text = prediction["detected_text"]
        cropped_image_path = prediction["image_path"]

        # Append data row
        sheet.append([category, confidence, predicted_brand, price, details, detected_text])

        # Add the image to the Excel file (if it exists)
        if os.path.exists(cropped_image_path):
            img = ExcelImage(cropped_image_path)
            img.width, img.height = 50, 50  # Resize image to fit into the cell
            sheet.add_image(img, f"G{idx + 2}")  # Place in the "Image" column

    excel_file_path = "predictions_with_images.xlsx"
    workbook.save(excel_file_path)

    # Cleanup after saving
    cleanup_images(cropped_images_dir)

    # Serve the Excel file as a response
    return FileResponse(
        excel_file_path,
        media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        filename="predictions_with_images.xlsx"
    )

'''

# Define the Prediction model
class Prediction(BaseModel):
    category: Optional[str]
    confidence: Optional[float]
    predicted_brand: Optional[str]
    price: Optional[str]
    details: Optional[str]
    detected_text: Optional[str]
    image_url: Optional[str]
    image_path: Optional[str]
    

@app.post("/generate-excel/")
async def generate_excel(predictions: List[Prediction]):
    print('Generate excel called')

    # Create an Excel workbook
    workbook = Workbook()
    sheet = workbook.active
    sheet.title = "Predictions"

    # Add headers
    headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text", ]
    sheet.append(headers)

    # Set header style and alignment
    for cell in sheet[1]:
        cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
    sheet.row_dimensions[1].height = 30  # Adjust header row height

    # Set column widths based on data type
    column_widths = {
        "A": 20,  # Category
        "B": 15,  # Confidence
        "C": 40,  # Predicted Brand
        "D": 15,  # Price
        "E": 50,  # Image URL
        "F": 30,  # Details 
        "G": 30   # Detected Text
    }
    for col, width in column_widths.items():
        sheet.column_dimensions[col].width = width

    # Add prediction rows
    for idx, prediction in enumerate(predictions):
        row_index = idx + 2  # Start from the second row

        # Add data to the row
        sheet.append([
            prediction.category,
            prediction.confidence,
            prediction.predicted_brand,
            prediction.price,
            prediction.image_url,
            prediction.details,
            prediction.detected_text,
            
        ])

        # Adjust row height for multiline text
        sheet.row_dimensions[row_index].height = 180  # Default height for rows

        # Wrap text in all cells of the row
        for col_idx in range(1, 8):  # Columns A to G
            cell = sheet.cell(row=row_index, column=col_idx)
            cell.alignment = Alignment(wrap_text=True, vertical="top")

        # Add image if the path exists
        if os.path.exists(prediction.image_path):
            img = ExcelImage(prediction.image_path)
            img.width, img.height = 160, 160  # Resize image to fit into the cell
            img_cell = f"G{row_index}"  # Image column
            sheet.add_image(img, img_cell)

    # Save the Excel file
    excel_file_path = "predictions_with_images.xlsx"
    workbook.save(excel_file_path)

    # Serve the Excel file as a response
    return FileResponse(
        excel_file_path,
        media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        filename="predictions_with_images.xlsx"
    )
'''

@app.post("/generate-excel/")
async def generate_excel(predictions: list):
    print('Generate excel called')
    # Create an Excel workbook
    workbook = Workbook()
    sheet = workbook.active
    sheet.title = "Predictions"

    # Add headers
    headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image URL"]
    sheet.append(headers)

    # Format the header row
    for cell in sheet[1]:
        cell.alignment = Alignment(horizontal="center", vertical="center")

    for idx, prediction in enumerate(predictions):
        # Extract details from the prediction
        category = prediction["category"]
        confidence = prediction["confidence"]
        predicted_brand = prediction["predicted_brand"]
        price = prediction["price"]
        details = prediction["details"]
        detected_text = prediction["detected_text"]
        image_url = prediction["image_url"]  # URL to the image
        cropped_image_path = prediction["image_path"]  # Path to local image file for Excel embedding

        # Append data row
        sheet.append([category, confidence, predicted_brand, price, details, detected_text, image_url])

        # If the image path exists, add the image to the Excel file
        if os.path.exists(cropped_image_path):
            img = ExcelImage(cropped_image_path)
            img.width, img.height = 50, 50  # Resize image to fit into the cell
            sheet.add_image(img, f"G{idx + 2}")  # Place in the "Image" column

    excel_file_path = "predictions_with_images.xlsx"
    workbook.save(excel_file_path)

    # Serve the Excel file as a response
    return FileResponse(
        excel_file_path,
        media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        filename="predictions_with_images.xlsx"
    )
'''

# code to accept the localhost to get images from


if __name__ == "__main__":
    import uvicorn
    uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)