Spaces:
Sleeping
Sleeping
File size: 10,963 Bytes
41658a6 d0af67b 41658a6 d0af67b 41658a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
from fastapi import FastAPI, File, UploadFile, Response, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import io
import requests
import sqlite3
from pydantic import BaseModel, EmailStr
from typing import List, Optional
from pathlib import Path
from model import YOLOModel
import shutil
from openpyxl import Workbook
from openpyxl.drawing.image import Image as ExcelImage
from openpyxl.styles import Alignment
import os
yolo = YOLOModel()
UPLOAD_FOLDER = Path("./uploads")
UPLOAD_FOLDER.mkdir(exist_ok=True)
app = FastAPI()
cropped_images_dir = "cropped_images"
# Initialize SQLite database
def init_db():
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
firstName TEXT NOT NULL,
lastName TEXT NOT NULL,
country TEXT,
number TEXT, -- Phone number stored as TEXT to allow various formats
email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null
password TEXT NOT NULL -- Password will be stored as a string (hashed ideally)
)
''')
conn.commit()
conn.close()
init_db()
class UserSignup(BaseModel):
firstName: str
lastName: str
country: str
number: str
email: EmailStr
password: str
class UserLogin(BaseModel):
email: str
password: str
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/signup")
async def signup(user_data: UserSignup):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Check if user already exists
c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
if c.fetchone():
raise HTTPException(status_code=400, detail="Email already registered")
# Insert new user
c.execute("""
INSERT INTO users (firstName, lastName, country, number, email, password)
VALUES (?, ?, ?, ?, ?, ?)
""", (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
conn.commit()
conn.close()
return {"message": "User registered successfully", "email": user_data.email}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/login")
async def login(user_data: UserLogin):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Find user
c.execute("SELECT * FROM users WHERE email = ? AND password = ?",
(user_data.email, user_data.password))
user = c.fetchone()
conn.close()
if not user:
raise HTTPException(status_code=401, detail="Invalid credentials")
return {
"message": "Login successful",
"user": {
"firstName": user[1],
"lastName": user[2],
"email": user[3]
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
# print(f'\n\t\tUPLOADED!!!!')
try:
file_path = UPLOAD_FOLDER / image.filename
with file_path.open("wb") as buffer:
shutil.copyfileobj(image.file, buffer)
# print(f'Starting to pass into model, {file_path}')
# Perform YOLO inference
predictions = yolo.predict(str(file_path))
print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
# Clean up uploaded file
file_path.unlink() # Remove file after processing
return JSONResponse(content={"items": predictions})
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.get("/download_cropped_image/{image_idx}")
def download_cropped_image(image_idx: int):
cropped_image_path = cropped_images_dir / f"crop_{image_idx}.jpg"
if cropped_image_path.exists():
return FileResponse(cropped_image_path, media_type="image/jpeg")
return JSONResponse(content={"error": "Cropped image not found"}, status_code=404)
def cleanup_images(directory: str):
"""Remove all images in the directory."""
for file in Path(directory).glob("*"):
file.unlink()
'''
@app.post("/generate-excel/")
async def generate_excel(predictions: list):
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
sheet.append(headers)
for idx, prediction in enumerate(predictions):
# Extract details from the prediction
category = prediction["category"]
confidence = prediction["confidence"]
predicted_brand = prediction["predicted_brand"]
price = prediction["price"]
details = prediction["details"]
detected_text = prediction["detected_text"]
cropped_image_path = prediction["image_path"]
# Append data row
sheet.append([category, confidence, predicted_brand, price, details, detected_text])
# Add the image to the Excel file (if it exists)
if os.path.exists(cropped_image_path):
img = ExcelImage(cropped_image_path)
img.width, img.height = 50, 50 # Resize image to fit into the cell
sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Cleanup after saving
cleanup_images(cropped_images_dir)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
# Define the Prediction model
class Prediction(BaseModel):
category: Optional[str]
confidence: Optional[float]
predicted_brand: Optional[str]
price: Optional[str]
details: Optional[str]
detected_text: Optional[str]
image_url: Optional[str]
image_path: Optional[str]
@app.post("/generate-excel/")
async def generate_excel(predictions: List[Prediction]):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text", ]
sheet.append(headers)
# Set header style and alignment
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
sheet.row_dimensions[1].height = 30 # Adjust header row height
# Set column widths based on data type
column_widths = {
"A": 20, # Category
"B": 15, # Confidence
"C": 40, # Predicted Brand
"D": 15, # Price
"E": 50, # Image URL
"F": 30, # Details
"G": 30 # Detected Text
}
for col, width in column_widths.items():
sheet.column_dimensions[col].width = width
# Add prediction rows
for idx, prediction in enumerate(predictions):
row_index = idx + 2 # Start from the second row
# Add data to the row
sheet.append([
prediction.category,
prediction.confidence,
prediction.predicted_brand,
prediction.price,
prediction.image_url,
prediction.details,
prediction.detected_text,
])
# Adjust row height for multiline text
sheet.row_dimensions[row_index].height = 180 # Default height for rows
# Wrap text in all cells of the row
for col_idx in range(1, 8): # Columns A to G
cell = sheet.cell(row=row_index, column=col_idx)
cell.alignment = Alignment(wrap_text=True, vertical="top")
# Add image if the path exists
if os.path.exists(prediction.image_path):
img = ExcelImage(prediction.image_path)
img.width, img.height = 160, 160 # Resize image to fit into the cell
img_cell = f"G{row_index}" # Image column
sheet.add_image(img, img_cell)
# Save the Excel file
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
@app.post("/generate-excel/")
async def generate_excel(predictions: list):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image URL"]
sheet.append(headers)
# Format the header row
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center")
for idx, prediction in enumerate(predictions):
# Extract details from the prediction
category = prediction["category"]
confidence = prediction["confidence"]
predicted_brand = prediction["predicted_brand"]
price = prediction["price"]
details = prediction["details"]
detected_text = prediction["detected_text"]
image_url = prediction["image_url"] # URL to the image
cropped_image_path = prediction["image_path"] # Path to local image file for Excel embedding
# Append data row
sheet.append([category, confidence, predicted_brand, price, details, detected_text, image_url])
# If the image path exists, add the image to the Excel file
if os.path.exists(cropped_image_path):
img = ExcelImage(cropped_image_path)
img.width, img.height = 50, 50 # Resize image to fit into the cell
sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
# code to accept the localhost to get images from
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True) |