Spaces:
Sleeping
Sleeping
import sys | |
import os | |
import gym | |
import torch | |
import matplotlib.pyplot as plt | |
from a3c.discrete_A3C import train | |
from a3c.utils import v_wrap | |
from a3c.net import Net | |
from wordle_env.wordle import WordleEnvBase | |
def evaluate_checkpoints(dir, env): | |
n_s = env.observation_space.shape[0] | |
n_a = env.action_space.n | |
words_list = env.words | |
word_width = len(env.words[0]) | |
net = Net(n_s, n_a, words_list, word_width) | |
results = {} | |
print(dir) | |
for checkpoint in os.listdir(dir): | |
checkpoint_path = os.path.join(dir, checkpoint) | |
if os.path.isfile(checkpoint_path): | |
net.load_state_dict(torch.load(checkpoint_path)) | |
wins, guesses = evaluate(net, env) | |
results[checkpoint] = wins, guesses | |
return dict(sorted(results.items(), key=lambda x: (x[1][0], -x[1][1]), reverse=True)) | |
def evaluate(net, env): | |
print("Evaluation mode") | |
n_wins = 0 | |
n_guesses = 0 | |
n_win_guesses = 0 | |
env = env.unwrapped | |
N = env.allowable_words | |
for goal_word in env.words[:N]: | |
win, outcomes = play(net, env) | |
if win: | |
n_wins += 1 | |
n_win_guesses += len(outcomes) | |
# else: | |
# print("Lost!", goal_word, outcomes) | |
n_guesses += len(outcomes) | |
print(f"Evaluation complete, won {n_wins/N*100}% and took {n_win_guesses/n_wins} guesses per win, " | |
f"{n_guesses / N} including losses.") | |
return n_wins/N*100, n_win_guesses/n_wins | |
def play(net, env): | |
state = env.reset() | |
outcomes = [] | |
win = False | |
for i in range(env.max_turns): | |
action = net.choose_action(v_wrap(state[None, :])) | |
state, reward, done, _ = env.step(action) | |
outcomes.append((env.words[action], reward)) | |
if done: | |
if reward >= 0: | |
win = True | |
break | |
return win, outcomes | |
def print_results(global_ep, win_ep, res): | |
print("Jugadas:", global_ep.value) | |
print("Ganadas:", win_ep.value) | |
plt.plot(res) | |
plt.ylabel('Moving average ep reward') | |
plt.xlabel('Step') | |
plt.show() | |
if __name__ == "__main__": | |
max_ep = int(sys.argv[1]) if len(sys.argv) > 1 else 100000 | |
env_id = sys.argv[2] if len(sys.argv) > 2 else 'WordleEnv100FullAction-v0' | |
evaluation = True if len(sys.argv) > 3 and sys.argv[3] == 'evaluation' else False | |
env = gym.make(env_id) | |
model_checkpoint_dir = os.path.join('checkpoints', env.unwrapped.spec.id) | |
if not evaluation: | |
global_ep, win_ep, gnet, res = train(env, max_ep, model_checkpoint_dir) | |
print_results(global_ep, win_ep, res) | |
evaluate(gnet, env) | |
else: | |
results = evaluate_checkpoints(model_checkpoint_dir, env) | |
print(results) | |