File size: 2,122 Bytes
8b644df
 
 
d1bab71
18ef497
d1bab71
bbcea92
 
 
 
 
 
 
 
2e03541
 
bbcea92
 
2e03541
a93c076
 
 
bbcea92
 
 
8b644df
2e03541
8b644df
bbcea92
2e03541
bbcea92
2e03541
bbcea92
 
 
2e03541
 
 
bbcea92
 
 
 
 
 
 
8b644df
758f9db
8b644df
bbcea92
8b644df
 
 
 
 
 
 
 
 
 
 
 
 
8f08ab3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces

# Ensure CUDA is available
assert torch.cuda.is_available(), "CUDA is not available. Please check your GPU setup."

# Set the device
device = torch.device("cuda")
torch.cuda.set_device(0)  # Use the first GPU if multiple are available

# Load the model and tokenizer
peft_model_id = "rootxhacker/CodeAstra-7B"
config = PeftConfig.from_pretrained(peft_model_id)

# Load the model on GPU
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    load_in_4bit=True,
    torch_dtype=torch.float16,
    device_map="auto"
)

tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
model.to(device)

# Ensure all model parameters are on CUDA
for param in model.parameters():
    param.data = param.data.to(device)

@spaces.GPU(duration=200)
def get_completion(query, model, tokenizer):
    try:
        inputs = tokenizer(query, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
        return tokenizer.decode(outputs[0].cpu(), skip_special_tokens=True)
    except Exception as e:
        return f"An error occurred: {str(e)}"

@spaces.GPU(duration=200)
def code_review(code_to_analyze):
    query = f"As a code review expert, examine the following code for potential security flaws and provide guidance on secure coding practices:\n{code_to_analyze}"
    result = get_completion(query, model, tokenizer)
    return result

# Create Gradio interface
iface = gr.Interface(
    fn=code_review,
    inputs=gr.Textbox(lines=10, label="Enter code to analyze"),
    outputs=gr.Textbox(label="Code Review Result"),
    title="Code Review Expert",
    description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices."
)

# Launch the Gradio app with a public link
iface.launch()