Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
import spaces | |
# Ensure CUDA is available | |
assert torch.cuda.is_available(), "CUDA is not available. Please check your GPU setup." | |
# Set the device | |
device = torch.device("cuda") | |
torch.cuda.set_device(0) # Use the first GPU if multiple are available | |
# Load the model and tokenizer | |
peft_model_id = "rootxhacker/CodeAstra-7B" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
# Load the model on GPU | |
model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
load_in_4bit=True, | |
torch_dtype=torch.float16, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
model.to(device) | |
# Ensure all model parameters are on CUDA | |
for param in model.parameters(): | |
param.data = param.data.to(device) | |
def get_completion(query, model, tokenizer): | |
try: | |
inputs = tokenizer(query, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7) | |
return tokenizer.decode(outputs[0].cpu(), skip_special_tokens=True) | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def code_review(code_to_analyze): | |
query = f"As a code review expert, examine the following code for potential security flaws and provide guidance on secure coding practices:\n{code_to_analyze}" | |
result = get_completion(query, model, tokenizer) | |
return result | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=code_review, | |
inputs=gr.Textbox(lines=10, label="Enter code to analyze"), | |
outputs=gr.Textbox(label="Code Review Result"), | |
title="Code Review Expert", | |
description="This tool analyzes code for potential security flaws and provides guidance on secure coding practices." | |
) | |
# Launch the Gradio app with a public link | |
iface.launch() |