rootxhacker's picture
Update app.py
33cd7e2 verified
raw
history blame
27.8 kB
#!/usr/bin/env python3
"""
AR-Diffusion Chat Interface for Hugging Face Spaces
Experimental model with Quality vs Speed modes
Optimized for Zero GPU deployment with @spaces.GPU
"""
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import numpy as np
import re
import time
from typing import List, Tuple, Generator
import os
import gc
import spaces
# Global model variables for memory efficiency
tokenizer = None
model = None
current_generator = None
device = None
def get_noising_schedule(i, max_it, sharpness=5.0):
"""Exponential noise schedule for denoising"""
x = i / max_it
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
class ARDiffusionGenerator:
"""Base AR-Diffusion generator with shared functionality"""
def __init__(self, tokenizer, model, device):
self.tokenizer = tokenizer
self.model = model
self.device = device
self.mask_token_id = self._find_mask_token()
def _find_mask_token(self) -> int:
"""Find MASK token ID"""
for candidate in ['MASK', '<mask>', '[MASK]', '<|mask|>']:
try:
tokens = self.tokenizer.encode(candidate, add_special_tokens=False)
if len(tokens) == 1:
return tokens[0]
except:
continue
return getattr(self.tokenizer, 'unk_token_id', 50257) or 50257
def create_prompt(self, instruction: str) -> str:
"""Create Alpaca-style prompt"""
return f"""### Instruction:
{instruction}
### Response:
"""
class QualityGenerator(ARDiffusionGenerator):
"""Quality-focused AR-Diffusion generator (from first script)"""
def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0,
temperature: float = 1.0) -> torch.Tensor:
"""Research-grade filtering with proper order"""
original_shape = logits.shape
if logits.dim() == 3:
logits = logits.squeeze(0)
elif logits.dim() == 1:
logits = logits.unsqueeze(0)
logits = logits.clone()
# Temperature scaling first
if temperature != 1.0:
logits = logits / temperature
# Top-k filtering
if top_k > 0 and top_k < logits.size(-1):
topk_vals, _ = torch.topk(logits, top_k, dim=-1)
thresholds = topk_vals[:, -1].unsqueeze(-1)
logits = torch.where(logits < thresholds,
torch.full_like(logits, float("-inf")), logits)
# Top-p filtering
if top_p > 0.0 and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = torch.softmax(sorted_logits, dim=-1)
cum_probs = probs.cumsum(dim=-1)
mask = cum_probs > top_p
mask[:, 0] = False
scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(
dim=-1, index=sorted_indices, src=mask)
logits = torch.where(scatter_mask,
torch.full_like(logits, float("-inf")), logits)
# Restore original shape
if len(original_shape) == 1:
logits = logits.squeeze(0)
elif original_shape[0] == 1 and logits.dim() == 2:
logits = logits.unsqueeze(0)
return logits
def generate_start(self, prompt: str, length: int = 8) -> List[int]:
"""Generate natural start"""
tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
input_ids = tokens['input_ids'][0]
generated = []
current = input_ids.clone()
with torch.no_grad():
for _ in range(length):
outputs = self.model(input_ids=current.unsqueeze(0))
logits = outputs.logits[0, -1]
filtered_logits = self.filter_logits(
logits, top_k=50, top_p=0.9, temperature=0.8
)
probs = F.softmax(filtered_logits, dim=-1)
next_token = torch.multinomial(probs, 1).item()
if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
break
generated.append(next_token)
current = torch.cat([current, torch.tensor([next_token], device=self.device)])
return generated
def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
"""Create corrupted sequence for quality mode"""
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
natural_start = self.generate_start(prompt, length=random.randint(8, 12))
# Longer sequences for better quality
prompt_length = len(prompt_tokens)
if prompt_length > 25:
num_masks = random.randint(35, 50)
elif prompt_length > 15:
num_masks = random.randint(25, 40)
else:
num_masks = random.randint(20, 35)
sequence = (
prompt_tokens.tolist() +
natural_start +
[self.mask_token_id] * num_masks +
[13]
)
tensor = torch.tensor(sequence)
text = self.tokenizer.decode(tensor, skip_special_tokens=False)
return text, tensor
def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
"""Quality generation with progress updates and speed tracking"""
steps = 40
temperature = 0.7
start_time = time.time()
if progress_callback:
progress_callback(0.1, "Creating sequence...")
full_prompt = self.create_prompt(prompt)
corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
if progress_callback:
progress_callback(0.2, "Starting quality denoising...")
result, stats = self._denoise_quality(corrupted_ids, steps, temperature, progress_callback)
# Calculate overall stats
total_time = time.time() - start_time
response = self._clean_response(result)
word_count = len(response.split())
stats.update({
'total_time': total_time,
'word_count': word_count,
'words_per_second': word_count / total_time if total_time > 0 else 0
})
return response, stats
def _denoise_quality(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
"""Quality denoising with progress updates and speed tracking"""
current_ids = corrupted_ids.clone()
total_replacements = 0
start_time = time.time()
for step in range(steps):
step_start = time.time()
if progress_callback:
progress = 0.2 + (step / steps) * 0.7
elapsed = time.time() - start_time
tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(progress, f"Quality step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
mask_positions = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
if len(mask_positions) == 0:
break
with torch.no_grad():
outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
logits = outputs.logits[0]
current_temp = max(0.4, temperature * (1 - step / steps))
# Conservative replacement for quality
if step < steps // 4:
max_replacements = min(1, len(mask_positions))
elif step < steps // 2:
max_replacements = min(2, len(mask_positions))
else:
max_replacements = min(3, len(mask_positions))
sorted_positions = sorted(mask_positions.tolist())
step_replacements = 0
for pos in sorted_positions[:max_replacements]:
if pos < len(logits):
token_logits = logits[pos].clone()
# Anti-repetition
context_start = max(0, pos - 5)
recent_tokens = set(current_ids[context_start:pos].tolist())
for recent_token in recent_tokens:
if recent_token < len(token_logits):
token_logits[recent_token] -= 8.0
# Quality filtering
filtered_logits = self.filter_logits(
token_logits,
top_k=30,
top_p=0.75,
temperature=current_temp
)
probs = F.softmax(filtered_logits, dim=-1)
probs = torch.clamp(probs, min=1e-8, max=1.0)
new_token = torch.multinomial(probs, 1).item()
# Filter unwanted tokens
unwanted = [self.mask_token_id, 128001, 128000]
if new_token in unwanted:
top_k_vals, top_k_indices = torch.topk(filtered_logits, 10)
for alternative in top_k_indices:
if alternative.item() not in unwanted:
new_token = alternative.item()
break
current_ids[pos] = new_token
step_replacements += 1
total_replacements += 1
if progress_callback:
elapsed = time.time() - start_time
final_speed = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
# Calculate final statistics
total_time = time.time() - start_time
stats = {
'mode': 'Quality',
'steps': steps,
'tokens_replaced': total_replacements,
'generation_time': total_time,
'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
}
result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
return result, stats
def _clean_response(self, text: str) -> str:
"""Clean response for quality output"""
if "### Response:" in text:
response = text.split("### Response:")[-1].strip()
else:
response = text.strip()
if not response:
return text
# Quality cleaning
response = re.sub(r"'{2,}", "", response)
response = re.sub(r'"{2,}', "", response)
response = re.sub(r"\.{2,}", ".", response)
response = re.sub(r",{2,}", ",", response)
response = re.sub(r"\s+", " ", response)
# Remove artifacts
response = re.sub(r"\$+", "", response)
response = re.sub(r"#+", "", response)
response = re.sub(r"@+", "", response)
response = response.strip()
if response and not response.endswith(('.', '!', '?')):
response += "."
return response
class SpeedGenerator(ARDiffusionGenerator):
"""Speed-focused AR-Diffusion generator (from second script)"""
def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8,
temperature: float = 1.0) -> torch.Tensor:
"""Fast logits filtering"""
logits = logits.clone()
if temperature != 1.0:
logits = logits / temperature
# Top-k filtering
if top_k > 0 and top_k < logits.size(-1):
topk_vals, _ = torch.topk(logits, top_k, dim=-1)
threshold = topk_vals[-1]
logits = torch.where(logits < threshold, torch.full_like(logits, float("-inf")), logits)
# Top-p filtering
if top_p > 0.0 and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
probs = torch.softmax(sorted_logits, dim=-1)
cum_probs = probs.cumsum(dim=-1)
mask = cum_probs > top_p
mask[0] = False
scatter_mask = torch.zeros_like(logits, dtype=torch.bool)
scatter_mask.scatter_(0, sorted_indices, mask)
logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits)
return logits
def generate_start(self, prompt: str, length: int = 6) -> List[int]:
"""Generate natural start for speed mode"""
tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
input_ids = tokens['input_ids'][0]
generated = []
current = input_ids.clone()
with torch.no_grad():
for _ in range(length):
outputs = self.model(input_ids=current.unsqueeze(0))
logits = outputs.logits[0, -1]
filtered_logits = self.filter_logits(logits, top_k=20, top_p=0.9, temperature=0.8)
probs = F.softmax(filtered_logits, dim=-1)
next_token = torch.multinomial(probs, 1).item()
if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
break
generated.append(next_token)
current = torch.cat([current, torch.tensor([next_token], device=self.device)])
return generated
def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
"""Create sequence optimized for speed"""
prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
natural_start = self.generate_start(prompt, length=6)
# Shorter sequences for speed
prompt_words = len(prompt.split())
if prompt_words > 8:
num_masks = random.randint(15, 25)
else:
num_masks = random.randint(12, 20)
sequence = (
prompt_tokens.tolist() +
natural_start +
[self.mask_token_id] * num_masks +
[13]
)
tensor = torch.tensor(sequence)
text = self.tokenizer.decode(tensor, skip_special_tokens=False)
return text, tensor
def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
"""Speed generation with progress updates and speed tracking"""
steps = 10
temperature = 0.8
start_time = time.time()
if progress_callback:
progress_callback(0.1, "Creating sequence...")
full_prompt = self.create_prompt(prompt)
corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
if progress_callback:
progress_callback(0.2, "Starting speed denoising...")
result, stats = self._denoise_speed(corrupted_ids, steps, temperature, progress_callback)
# Calculate overall stats
total_time = time.time() - start_time
response = self._clean_response(result)
word_count = len(response.split())
stats.update({
'total_time': total_time,
'word_count': word_count,
'words_per_second': word_count / total_time if total_time > 0 else 0
})
return response, stats
def _denoise_speed(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
"""Ultra-fast denoising with progress updates and speed tracking"""
current_ids = corrupted_ids.clone()
total_replacements = 0
start_time = time.time()
# Use mixed precision for speed on GPU
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
for step in range(steps):
step_start = time.time()
if progress_callback:
progress = 0.2 + (step / steps) * 0.7
elapsed = time.time() - start_time
tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(progress, f"Speed step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
mask_pos = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
if len(mask_pos) == 0:
break
with torch.no_grad():
outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
logits = outputs.logits[0]
current_temp = temperature * (0.9 + 0.2 * (step / steps))
# Aggressive replacement for speed
max_replace = min(8, len(mask_pos))
positions = sorted(mask_pos.tolist())[:max_replace]
step_replacements = 0
for pos in positions:
if pos < len(logits):
token_logits = logits[pos].clone()
# Light anti-repetition
recent_start = max(0, pos - 3)
recent_tokens = set(current_ids[recent_start:pos].tolist())
for token in recent_tokens:
if token < len(token_logits):
token_logits[token] -= 3.0
# Fast filtering
filtered_logits = self.filter_logits(
token_logits, top_k=12, top_p=0.85, temperature=current_temp
)
probs = F.softmax(filtered_logits, dim=-1)
probs = torch.clamp(probs, min=1e-8, max=1.0)
new_token = torch.multinomial(probs, 1).item()
# Quick filtering
if new_token in [self.mask_token_id, 128001, 128000]:
top_vals, top_indices = torch.topk(filtered_logits, 3)
new_token = top_indices[1].item()
current_ids[pos] = new_token
step_replacements += 1
total_replacements += 1
if progress_callback:
elapsed = time.time() - start_time
final_speed = total_replacements / elapsed if elapsed > 0 else 0
progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
# Calculate final statistics
total_time = time.time() - start_time
stats = {
'mode': 'Speed',
'steps': steps,
'tokens_replaced': total_replacements,
'generation_time': total_time,
'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
}
result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
return result, stats
def _clean_response(self, text: str) -> str:
"""Clean response for speed output"""
if "### Response:" in text:
response = text.split("### Response:")[-1].strip()
else:
response = text.strip()
if not response:
return text
# Minimal cleaning for speed
response = re.sub(r"'{3,}", "", response)
response = re.sub(r'"{3,}', "", response)
response = re.sub(r"\.{3,}", ".", response)
response = re.sub(r",{3,}", ",", response)
response = re.sub(r"\s+", " ", response)
response = response.strip()
if response and not response.endswith(('.', '!', '?')):
response += "."
return response
{device}...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
device_map="auto" if device.type == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
return tokenizer, model, device
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU
def chat_function(message, history, mode, progress=gr.Progress()):
"""Main chat function with @spaces.GPU decorator, progress tracking, and speed display"""
if not message.strip():
return history, "", ""
try:
# Load model (this will run on GPU when GPU is allocated)
progress(0.05)
tok, mod, dev = load_model()
# Create appropriate generator
if mode == "Quality (Slower, Better)":
generator = QualityGenerator(tok, mod, dev)
progress(0.1)
else:
generator = SpeedGenerator(tok, mod, dev)
progress(0.1)
# Generate response with progress callback
def progress_callback(pct, status_msg):
progress(pct)
# We'll show status in the performance display instead
response, stats = generator.generate(message, progress_callback)
progress(1.0)
# Create performance info
perf_info = f"""**⚡ Performance Stats:**
- **Mode:** {stats['mode']}
- **Generation Time:** {stats['generation_time']:.2f}s
- **Tokens Replaced:** {stats['tokens_replaced']}
- **Speed:** {stats['tokens_per_second']:.1f} tokens/sec
- **Words Generated:** {stats['word_count']} words
- **Words/Second:** {stats['words_per_second']:.1f}
- **Steps:** {stats['steps']}"""
# Update history
history.append([message, response])
# Cleanup memory for Zero GPU efficiency
cleanup_memory()
return history, "", perf_info
except Exception as e:
error_msg = f"Error: {str(e)}"
history.append([message, error_msg])
cleanup_memory()
return history, "", f"**❌ Error occurred during generation**"
def clear_chat():
"""Clear chat history and cleanup memory"""
cleanup_memory()
return [], ""
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="AR-Diffusion Chat - Experimental Model",
theme=gr.themes.Soft(),
css="""
.warning-box {
background-color: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 5px;
padding: 10px;
margin: 10px 0;
}
"""
) as interface:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🧪 AR-Diffusion Chat Interface</h1>
<p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
<p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
<p><em>🔥 Powered by Zero GPU with @spaces.GPU</em></p>
<p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=500,
show_label=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Row():
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Column(scale=1):
gr.HTML("""
<div class="warning-box">
<h3>⚙️ Mode Selection</h3>
<p><strong>Quality Mode:</strong> Slower but more coherent responses (~40 steps)</p>
<p><strong>Speed Mode:</strong> Faster responses with decent quality (~10 steps)</p>
<p><em>🔥 GPU acceleration via @spaces.GPU</em></p>
</div>
""")
mode = gr.Radio(
choices=["Quality (Slower, Better)", "Speed (Faster)"],
value="Quality (Slower, Better)",
label="Generation Mode"
)
# Performance display
perf_display = gr.Markdown(
"**⚡ Performance Stats:** *Generate a message to see stats*",
elem_id="performance"
)
gr.HTML("""
<div class="warning-box">
<h3>ℹ️ About AR-Diffusion</h3>
<p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
<br>
<p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
<p><strong>Note:</strong> This model is experimental and may produce unexpected results. If the specific model fails to load, a fallback model will be used for demonstration.</p>
</div>
""")
# Event handlers
def submit_message(message, history, mode):
return chat_function(message, history, mode)
send_btn.click(
submit_message,
inputs=[msg, chatbot, mode],
outputs=[chatbot, msg, perf_display]
)
msg.submit(
submit_message,
inputs=[msg, chatbot, mode],
outputs=[chatbot, msg, perf_display]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, perf_display]
)
return interface
# Launch interface
if __name__ == "__main__":
demo = create_interface()
demo.queue(max_size=20) # Important for Zero GPU
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
# Updated requirements.txt should include:
# torch>=2.0.0
# transformers>=4.30.0
# gradio
# numpy
# accelerate
# spaces
# peft # For LoRA adapter support