Spaces:
Running
Running
## Interpreting CLIP's Image Representation via Text-Based Decomposition | |
Official PyTorch Implementation | |
### [Paper](https://arxiv.org/abs/2310.05916) | [Project Page](https://yossigandelsman.github.io/clip_decomposition/) | |
[Yossi Gandelsman](https://yossigandelsman.github.io/), [Alexei A. Efros](https://people.eecs.berkeley.edu/~efros/) and [Jacob Steinhardt](https://jsteinhardt.stat.berkeley.edu/) | |
 | |
### Setup | |
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment: | |
```bash | |
conda env create -f environment.yml | |
conda activate prsclip | |
``` | |
### Preprocessing | |
To obtain the projected residual stream components for the ImageNet validation set, including the contributions from multi-head attentions and MLPs, please run one of the following instructions: | |
```bash | |
python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k --data_path <PATH> | |
python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path <PATH> | |
python compute_prs.py --dataset imagenet --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k --data_path <PATH> | |
``` | |
To obtain the precomputed text representations of the ImageNet classes, please run: | |
```bash | |
python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k | |
python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k | |
python compute_text_projection.py --dataset imagenet --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k | |
``` | |
### Mean-ablations | |
To verify that the MLPs and the attention from the class token to itself can be mean-ablated, please run: | |
```bash | |
python compute_ablations.py --model ViT-H-14 | |
python compute_ablations.py --model ViT-L-14 | |
python compute_ablations.py --model ViT-B-16 | |
``` | |
### Convert text labels to represntation | |
To convert the text labels for <i>TextSpan</i> to CLIP text representations, please run: | |
```bash | |
python compute_text_set_projection.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path text_descriptions/google_3498_english.txt | |
python compute_text_set_projection.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path text_descriptions/image_descriptions_general.txt | |
``` | |
### ImageNet segmentation | |
Please download the dataset from [here](http://calvin-vision.net/bigstuff/proj-imagenet/data/gtsegs_ijcv.mat): | |
```bash | |
mkdir imagenet_seg | |
cd imagenet_seg | |
wget http://calvin-vision.net/bigstuff/proj-imagenet/data/gtsegs_ijcv.mat | |
``` | |
To get the evaluation results, please run: | |
```bash | |
python compute_segmentations.py --device cuda:0 --model ViT-H-14 --pretrained laion2b_s32b_b79k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img | |
python compute_segmentations.py --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img | |
python compute_segmentations.py --device cuda:0 --model ViT-B-16 --pretrained laion2b_s34b_b88k --data_path imagenet_seg/gtsegs_ijcv.mat --save_img | |
``` | |
Save the results with the `--save_img` flag. | |
### TextSpan | |
To find meaningful directions for all the attenion heads, run: | |
```bash | |
python compute_complete_text_set.py --device cuda:0 --model ViT-B-16 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general | |
python compute_complete_text_set.py --device cuda:0 --model ViT-L-14 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general | |
python compute_complete_text_set.py --device cuda:0 --model ViT-H-14 --texts_per_head 20 --num_of_last_layers 4 --text_descriptions image_descriptions_general | |
``` | |
### Other datasets | |
To download the Waterbirds datasets, run: | |
```bash | |
wget https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz | |
tar -xf waterbird_complete95_forest2water2.tar.gz | |
``` | |
To compute the overall accuracy, run: | |
```bash | |
python compute_text_projection.py --dataset binary_waterbirds --device cuda:0 --model ViT-L-14 --pretrained laion2b_s32b_b82k | |
python compute_use_specific_heads.py --model ViT-L-14 --dataset binary_waterbirds | |
``` | |
### Spatial decomposition | |
Please see a demo for the spatial decomposition of CLIP in `demo.ipynb`. | |
### BibTeX | |
```bibtex | |
@misc{gandelsman2023interpreting, | |
title={Interpreting CLIP's Image Representation via Text-Based Decomposition}, | |
author={Yossi Gandelsman and Alexei A. Efros and Jacob Steinhardt}, | |
year={2023}, | |
eprint={2310.05916}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV} | |
} | |
``` | |