Spaces:
Running
Running
import argparse | |
import torch | |
from llava.constants import ( | |
IMAGE_TOKEN_INDEX, | |
DEFAULT_IMAGE_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
IMAGE_PLACEHOLDER, | |
) | |
from llava.conversation import conv_templates, SeparatorStyle | |
from llava.model.builder import load_pretrained_model | |
from llava.utils import disable_torch_init | |
from llava.mm_utils import ( | |
process_images, | |
tokenizer_image_token, | |
get_model_name_from_path, | |
KeywordsStoppingCriteria, | |
) | |
from llava.transformers.generation.stopping_criteria import MaxNewTokensCriteria | |
from PIL import Image | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import re | |
def image_parser(args): | |
out = args.image_file.split(args.sep) | |
return out | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def load_images(image_files): | |
out = [] | |
for image_file in image_files: | |
image = load_image(image_file) | |
out.append(image) | |
return out | |
def get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, query, image): | |
sep = "," | |
temperature = 0 | |
top_p = None | |
num_beams = 1 | |
max_new_tokens = 1024 | |
conv_mode = None | |
disable_torch_init() | |
tokenizer, model, image_processor, context_len = tokenizer, model, image_processor, context_len | |
hl = hl | |
hl.reinit() | |
qs = query | |
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
if IMAGE_PLACEHOLDER in qs: | |
if model.config.mm_use_im_start_end: | |
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) | |
else: | |
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) | |
else: | |
if model.config.mm_use_im_start_end: | |
qs = image_token_se + "\n" + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
if "llama-2" in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
else: | |
conv_mode = "llava_v0" | |
if conv_mode is not None and conv_mode != conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, conv_mode, conv_mode | |
) | |
) | |
else: | |
conv_mode = conv_mode | |
conv = conv_templates[conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
images = [image] | |
images = [image.convert('RGB') if image.mode != 'RGB' else image for image in images] | |
images_tensor = process_images( | |
images, | |
image_processor, | |
model.config | |
).to(model.device, dtype=torch.float16) | |
input_ids = ( | |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
.to(model.device) | |
) | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = [ | |
KeywordsStoppingCriteria(keywords, tokenizer, input_ids), | |
MaxNewTokensCriteria(input_ids.shape[1], max_new_tokens) | |
] | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=images_tensor, | |
do_sample=True if temperature > 0 else False, | |
temperature=temperature, | |
top_p=top_p, | |
num_beams=num_beams, | |
# max_new_tokens=max_new_tokens, | |
use_cache=True, | |
stopping_criteria=stopping_criteria, | |
) | |
attention_output = hl.finalize() | |
attention_output = attention_output.view(attention_output.shape[0],24,24) | |
attention_output = attention_output.detach() | |
input_token_len = input_ids.shape[1] | |
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
if n_diff_input_output > 0: | |
print( | |
f"[Warning] {n_diff_input_output} output_ids are not the same as the input_ids" | |
) | |
# outputs = tokenizer.batch_decode( | |
# output_ids[:, input_token_len:].cpu(), skip_special_tokens=True | |
# )[0] | |
# outputs = outputs.strip() | |
# if outputs.endswith(stop_str): | |
# outputs = outputs[: -len(stop_str)] | |
# outputs = outputs.strip() | |
output = tokenizer.decode(output_ids[:, input_token_len:].cpu()[0]) | |
token_mapping = get_token_mapping(tokenizer, output, output_ids[:, input_token_len:].cpu()[0]) | |
return output, {"llava_attentions":attention_output.detach(), "llava_token_mapping":token_mapping} | |
def clean_text(text): | |
cleaned_text = re.sub(r'^[^a-zA-Z0-9]+|[^a-zA-Z0-9]+$', '', text) | |
return cleaned_text | |
def get_token_mapping(tokenizer, outputs, output_ids): | |
tokens = tokenizer.tokenize(outputs)[1:] | |
assert len(tokens) == len(output_ids) | |
current_position = 0 | |
offsets = [] | |
for token in tokens: | |
cleaned_token = clean_text(token) | |
try: | |
token_start = outputs.find(cleaned_token, current_position) | |
except: | |
print(outputs, cleaned_token) | |
continue | |
token_end = token_start + len(cleaned_token) | |
offsets.append((token_start, token_end)) | |
current_position = token_end | |
return offsets | |
def from_preanswer_to_mask(highlight_text, query, cache_dict): | |
if highlight_text.strip() == query.strip() or highlight_text.strip() == "": | |
token_start_index = 0 | |
token_end_index = len(cache_dict["llava_token_mapping"]) - 1 | |
else: | |
text_start_index = query.find(highlight_text) | |
text_end_index = text_start_index + len(highlight_text) | |
for token_index, (token_text_mapping_st, token_text_mapping_end) in enumerate(cache_dict["llava_token_mapping"]): | |
if token_text_mapping_st <= text_start_index: | |
token_start_index = token_index | |
if token_text_mapping_end >= text_end_index: | |
token_end_index = token_index | |
break | |
attentions = cache_dict["llava_attentions"] | |
selected_attentions = attentions[token_start_index:token_end_index+1] | |
mask = selected_attentions.mean(dim=0) | |
return mask | |
def get_model(model_path = "llava-v1.5-7b", device = "cuda:0"): | |
model_path = f"liuhaotian/{model_path}" | |
model_path = model_path | |
model_base = None | |
model_name = get_model_name_from_path(model_path) | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path=model_path, | |
model_base=model_base, | |
model_name=model_name, | |
device= device, | |
# load_4bit = True, | |
) | |
return tokenizer, model, image_processor, context_len, model_name | |
if __name__ == "__main__": | |
prompt = "What are the things I should be cautious about when I visit here?" | |
image_file = "https://llava-vl.github.io/static/images/view.jpg" | |
image = Image.open(BytesIO(requests.get(image_file).content)).convert("RGB") | |
tokenizer, model, image_processor, context_len, model_name = get_model() | |
from .hook import hook_logger | |
hl = hook_logger(model, model.device, layer_index = 20) | |
output, cache_dict = get_preanswer(model, model_name, hl, tokenizer, image_processor, context_len, prompt, image) | |
mask = from_preanswer_to_mask(output[10:20], output, cache_dict) |