Spaces:
Running
Running
File size: 1,391 Bytes
c08f90f 2ff9e92 c08f90f eafc12d 81ee630 c08f90f 3e0f5ff c08f90f 713d2ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import os
import gradio
from PIL import Image
from timeit import default_timer as timer
from tensorflow import keras
import torch
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM, create_optimizer, DataCollatorForSeq2Seq
import numpy as np
loaded_model = TFAutoModelForSeq2SeqLM.from_pretrained("runaksh/financial_summary_T5_base")
loaded_tokenizer = AutoTokenizer.from_pretrained("runaksh/financial_summary_T5_base")
# Function for generating summary
def generate_summary(text,min_length=55,max_length=80):
text = "summarize: "+text
input = loaded_tokenizer(text,max_length=512,truncation=True,return_tensors='tf').input_ids
op=loaded_model.generate(input,min_length=min_length,max_length=max_length)
decoded_op = loaded_tokenizer.batch_decode(op,skip_special_tokens=True)
return decoded_op
title = "Financial News Summary"
description = "Enter the news"
# Gradio elements
# Input from user
in_prompt = gradio.components.Textbox(lines=2, label='Enter the News')
# Output response
out_response = gradio.components.Textbox(label='Summary')
# Gradio interface to generate UI link
iface = gradio.Interface(fn=generate_summary,
inputs = in_prompt,
outputs = out_response,
title=title,
description=description
)
iface.launch(debug = True) |