Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from PIL import Image | |
from timeit import default_timer as timer | |
from tensorflow import keras | |
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import numpy as np | |
username = "runaksh" | |
repo_name = "finetuned-sentiment-model" | |
repo_path = username+ '/' + repo_name | |
model_1 = pipeline(model= repo_path) | |
model_2 = AutoModelForSequenceClassification.from_pretrained("runaksh/Symptom-2-disease_distilBERT") | |
tokenizer_2 = AutoTokenizer.from_pretrained("runaksh/Symptom-2-disease_distilBERT") | |
# Function for response generation | |
def predict_sentiment(text): | |
result = model_1(text) | |
if result[0]['label'].endswith('0'): | |
return 'Negative' | |
else: | |
return 'Positive' | |
def predict(sample, validate=True): | |
pred = classifier(sample)[0]['label'] | |
return pred | |
def make_block(dem): | |
with dem: | |
gr.Markdown("Practicing for Capstone") | |
with gr.Tabs(): | |
with gr.TabItem("Sentiment Classification"): | |
with gr.Row(): | |
in_prompt_1 = gr.components.Textbox(lines=10, placeholder=None, label='Enter review text') | |
out_response_1 = gr.components.Textbox(type="text", label='Sentiment') | |
b1 = gr.Button("Enter") | |
with gr.TabItem("Symptoms and Disease Classification"): | |
with gr.Row(): | |
in_prompt_2 = gr.components.Textbox(lines=2, label='Enter the Symptoms') | |
out_response_2 = gr.components.Textbox(label='Disease') | |
b2 = gr.Button("Enter") | |
b1.click(predict_sentiment, inputs=in_prompt_1, outputs=out_response_1) | |
b2.click(predict, inputs=in_prompt_2, outputs=out_response_2) | |
if __name__ == '__main__': | |
model_1 = pipeline(model= repo_path) | |
classifier = pipeline("text-classification", model=model_2, tokenizer=tokenizer_2) | |
demo = gr.Blocks() | |
make_block(demo) | |
demo.launch() |