intratalent-v2 / app.py
rushankg's picture
Update app.py
f77d6e1 verified
import streamlit as st
import os
import tempfile
from pathlib import Path
import time
from typing import List, Dict, Tuple
import pandas as pd
from streamlit.runtime.uploaded_file_manager import UploadedFile
from anthropic import Anthropic
import pymongo
from dotenv import load_dotenv
import fitz # PyMuPDF
import voyageai
from pinecone.grpc import PineconeGRPC as Pinecone
from pinecone import ServerlessSpec
from pinecone import Index
# Load environment variables
load_dotenv()
# Initialize VoyageAI constants
VOYAGEAI_BATCH_SIZE = 128
VOYAGEAI_VECTOR_DIM = 512
# Initialize Pinecone
PINECONE_ID = "intratalent-v2"
# Initialize MongoDB client
MONGO_URI = os.getenv('MONGO_URI')
mongo_client = pymongo.MongoClient(MONGO_URI)
db = mongo_client['intratalent']
resume_collection = db['resumes']
# Initialize Anthropic client
anthropic = Anthropic(api_key=os.getenv('ANTHROPIC_API_KEY'))
# Initialize Streamlit app
st.set_page_config(
page_title="IntraTalent Resume Processor",
page_icon="πŸ“„",
layout="wide"
)
def extract_text_from_pdf(pdf_content: bytes) -> str:
"""Extract text from PDF content."""
try:
# Create a temporary file to store the PDF content
with tempfile.NamedTemporaryFile(mode='w+b', suffix='.pdf', delete=False) as temp_file:
temp_file.write(pdf_content)
temp_file_path = temp_file.name
# Extract text from PDF
doc = fitz.open(temp_file_path)
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text() + "\n"
doc.close()
# Clean up temporary file
os.unlink(temp_file_path)
return text
except Exception as e:
st.error(f"Error extracting text from PDF: {e}")
return ""
def extract_info_with_claude(resume_text: str) -> str:
"""Extract information from resume text using Claude."""
st.write("πŸ€– Sending request to Claude API...")
prompt = """
Extract the following information from the given resume:
1. Full Name
2. List of all experiences with their descriptions (copy exactly from resume)
Please format the output as follows:
Name: [Full Name]
Projects:
1. [Experience/Project Name]: [Experience/Project Description]
2. [Experience/Project Name]: [Experience/Project Description]
...
Extract all experiences, including projects, leadership, work experience, research, etc. Don't include hyphens and put the entire description on one line.
Here's the resume text:
{resume_text}
""".format(resume_text=resume_text)
try:
message = anthropic.messages.create(
model="claude-3-haiku-20240307",
max_tokens=4096,
system="You are a helpful assistant that extracts information from resumes.",
messages=[{
"role": "user",
"content": prompt
}]
)
extracted_info = message.content[0].text
st.write("βœ… Received response from Claude:")
st.code(extracted_info, language="text")
except Exception as e:
extracted_info = f"An error occurred: {e}"
st.error(f"❌ API Error: {e}")
return extracted_info
def get_pinecone_index(database_id: str) -> Index:
# initialize connection to pinecone
pc = Pinecone(api_key=os.getenv('PINECONE_API_KEY'))
# if the index does not exist, we create it
if not database_id in pc.list_indexes():
pc.create_index(
database_id,
dimension=VOYAGEAI_VECTOR_DIM,
spec=ServerlessSpec(
cloud='aws',
region='us-east-1'
),
metric='cosine'
)
# connect to index
index = pc.Index(database_id)
def add_to_voyage(person_name: str, person_projects: list) -> None:
embeds = []
metas = []
ids = []
index = get_pinecone_index(PINECONE_ID)
vo = voyageai.Client(api_key=os.getenv('VOYAGEAI_API_KEY'))
for i in range(len(person_projects)):
# Get the ith project
project = person_projects[i]
# Embed the description
embed = vo.embed(
texts=project["description"],
model='voyage-3-lite',
truncation=False
).embeddings[0]
embeds.append(embed)
# Create metadata using person's name + project name
meta = f"{person_name} {project['name']}"
metas.append(meta)
# Give it a unique id
id = i
ids.append(i)
# create list of (id, vector, metadata) tuples to be upserted
to_upsert = list(zip(ids, embeds, meta))
for i in range(0, len(ids), VOYAGEAI_BATCH_SIZE):
i_end = min(i+VOYAGEAI_BATCH_SIZE, len(ids))
index.upsert(vectors=to_upsert[i:i_end])
# let's view the index statistics
st.write(index.describe_index_stats())
def parse_resume(uploaded_file: UploadedFile) -> Tuple[str, List[Dict]]:
"""Parse a resume file and return name and projects."""
try:
st.write(f"πŸ“ Processing resume: {uploaded_file.name}")
resume_content = uploaded_file.getvalue()
st.write("πŸ“Š Extracting text from PDF...")
resume_text = extract_text_from_pdf(resume_content)
st.write("πŸ“„ Extracted text from PDF:")
st.code(resume_text)
extracted_info = extract_info_with_claude(resume_text)
st.write("πŸ” Parsing extracted information...")
# Parse the extracted information
lines = extracted_info.split('\n')
name = lines[0].split(': ')[1] if len(lines) > 0 and ': ' in lines[0] else "Unknown"
st.write(f"πŸ‘€ Extracted name: {name}")
projects = []
project_started = False
for line in lines:
if line.strip() == "Projects:":
project_started = True
continue
if project_started and line.strip():
project_parts = line.split(': ', 1)
if len(project_parts) == 2:
project_name = project_parts[0].split('. ', 1)[-1] # Remove the number
project_description = project_parts[1]
projects.append({"name": project_name, "description": project_description})
st.write("πŸ“‹ Extracted projects:")
st.json(projects)
# Store in MongoDB
resume_data = {
"name": name,
"projects": projects,
"full_content": resume_text
}
add_to_voyage(name, projects)
st.write("πŸ’Ύ Stored data in VoyageAI")
return name, projects
except Exception as e:
st.error(f"❌ Error processing resume: {e}")
return "Unknown", []
def process_resumes(uploaded_files: List[UploadedFile]) -> Dict:
"""Process multiple resumes and return results."""
results = {}
progress_bar = st.progress(0)
for idx, file in enumerate(uploaded_files):
st.write(f"\n---\n### Processing file {idx + 1} of {len(uploaded_files)}")
if file.type != "application/pdf":
st.warning(f"⚠️ Skipping {file.name}: Not a PDF file")
continue
try:
name, projects = parse_resume(file)
results[file.name] = {
"name": name,
"projects": projects
}
# Update progress
progress_bar.progress((idx + 1) / len(uploaded_files))
st.write(f"βœ… Successfully processed {file.name}")
except Exception as e:
st.error(f"❌ Error processing {file.name}: {e}")
return results
def display_results(results: Dict):
"""Display processed resume results in an organized manner."""
if not results:
return
st.subheader("πŸ“Š Processed Resumes")
for filename, data in results.items():
with st.expander(f"πŸ“„ {data['name']} ({filename})"):
st.write("🏷️ File details:")
st.json({
"filename": filename,
"name": data['name'],
"number_of_projects": len(data['projects'])
})
if data['projects']:
st.write("πŸ“‹ Projects:")
df = pd.DataFrame(data['projects'])
st.dataframe(
df,
column_config={
"name": "Project Name",
"description": "Description"
},
hide_index=True
)
else:
st.info("ℹ️ No projects found in this resume")
def main():
st.title("🎯 IntraTalent Resume Processor")
# File uploader section
st.header("πŸ“€ Upload Resumes")
uploaded_files = st.file_uploader(
"Upload up to 10 resumes (PDF only)",
type=['pdf'],
accept_multiple_files=True,
key="resume_uploader"
)
# Validate number of files
if uploaded_files and len(uploaded_files) > 10:
st.error("⚠️ Maximum 10 files allowed. Please remove some files.")
return
# Process button
if uploaded_files and st.button("πŸ”„ Process Resumes"):
with st.spinner("Processing resumes..."):
st.write("πŸš€ Starting resume processing...")
results = process_resumes(uploaded_files)
st.session_state['processed_results'] = results
st.write("✨ Processing complete!")
display_results(results)
# Query section
st.header("πŸ” Search Projects")
query = st.text_area(
"Enter your project requirements",
placeholder="Example: Looking for team members with experience in machine learning and computer vision...",
height=100
)
if query and st.button("πŸ”Ž Search"):
if 'processed_results' not in st.session_state:
st.warning("⚠️ Please process some resumes first!")
return
with st.spinner("Searching for matches..."):
st.write("πŸ”„ Preparing to search...")
# Here you would implement the embedding and similarity search
# Using the code from your original script
st.success("βœ… Search completed!")
# Display results in a nice format
st.subheader("🎯 Top Matches")
# Placeholder for search results
st.info("πŸ”œ Feature coming soon: Will display matching projects and candidates based on similarity search")
if __name__ == "__main__":
main()