Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
import torch | |
import numpy as np | |
from streamlit_card import card | |
cosine_scores = pickle.load(open('cosine_scores.pkl','rb')) | |
coursedf = pd.read_pickle('course_df.pkl') | |
course_title_list = [i + ": " + j for i, j in zip(coursedf['ref'].to_list(), coursedf['title'].to_list())] | |
def get_random_course(): | |
row=coursedf.sample(1) | |
return row['ref'], row['title'] | |
def recommend(index): | |
pairs = {} | |
for i in range(len(coursedf)): | |
pairs[coursedf.iloc[i,1]]=cosine_scores[index][i] | |
sorttemp = sorted(pairs.items(), key=lambda x:x[1], reverse=True) | |
sorted_final = dict(sorttemp[1:31]) | |
return list(sorted_final.keys()) | |
st.set_page_config(page_title='DiscoverCourses', page_icon=':book:') | |
st.title('DiscoverCourses') | |
selected_course = st.selectbox('Please select a course',course_title_list) | |
if st.button('I want more like this!'): | |
output=recommend(np.where((coursedf['ref']+": "+coursedf['title']) == selected_course)[0][0]) | |
for result in output: | |
index=np.where(coursedf['title'] == result)[0][0] | |
course_id=coursedf.iloc[index,0] | |
card( | |
title=course_id, | |
text=result, | |
url="https://explorecourses.stanford.edu/search?q="+course_id+": "+result | |
) | |