File size: 2,134 Bytes
4b5c8b9 aa0d849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
from huggingface_hub import hf_hub_download
import yolov9
# Load the model
model_path = r'./model/V2_best.pt'
model = yolov9.load(model_path)
def yolov9_inference(img_path, conf_threshold=0.4, iou_threshold=0.5):
"""
:param conf_threshold: Confidence threshold for NMS.
:param iou_threshold: IoU threshold for NMS.
:param img_path: Path to the image file.
:param size: Optional, input size for inference.
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
"""
global model
# Set model parameters
model.conf = conf_threshold
model.iou = iou_threshold
# Perform inference
results = model(img_path, size=640)
# Optionally, show detection bounding boxes on image
output = results.render()
return output[0]
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
img_path = gr.Image(type="filepath", label="Image")
# conf_threshold = gr.Slider(
# label="Confidence Threshold",
# minimum=0.1,
# maximum=1.0,
# step=0.1,
# value=0.4,
# )
# iou_threshold = gr.Slider(
# label="IoU Threshold",
# minimum=0.1,
# maximum=1.0,
# step=0.1,
# value=0.5,
# )
yolov9_infer = gr.Button(value="Prediction")
with gr.Column():
output_numpy = gr.Image(type="numpy",label="Output")
yolov9_infer.click(
fn=yolov9_inference,
inputs=[
img_path,
],
outputs=[output_numpy],
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
Traffic Signs Detection - Case Study
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True) |